How are laminar circuits of neocortex organized to generate conscious speech and language percepts? How does the brain restore information that is occluded by noise, or absent from an acoustic signal, by integrating contextual information over many milliseconds to disambiguate noise-occluded acoustical signals? How are speech and language heard in the correct temporal order, despite the influence of contexts that may occur many milliseconds before or after each perceived word? A neural model describes key mechanisms in forming conscious speech percepts, and quantitatively simulates a critical example of contextual disambiguation of speech and language; namely, phonemic restoration. Here, a phoneme deleted from a speech stream is perceptually restored when it is replaced by broadband noise, even when the disambiguating context occurs after the phoneme was presented. The model describes how the laminar circuits within a hierarchy of cortical processing stages may interact to generate a conscious speech percept that is embodied by a resonant wave of activation that occurs between acoustic features, acoustic item chunks, and list chunks. Chunk-mediated gating allows speech to be heard in the correct temporal order, even when what is heard depends upon future context.
How are sequences of events that are temporarily stored in a cognitive working memory unitized, or chunked, through learning? Such sequential learning is needed by the brain in order to enable language, spatial understanding, and motor skills to develop. In particular, how does the brain learn categories, or list chunks, that become selectively tuned to different temporal sequences of items in lists of variable length as they are stored in working memory, and how does this learning process occur in real time? The present article introduces a neural model that simulates learning of such list chunks. In this model, sequences of items are temporarily stored in an Item-and-Order, or competitive queuing, working memory before learning categorizes them using a categorization network, called a Masking Field, which is a self-similar, multiple-scale, recurrent on-center off-surround network that can weigh the evidence for variable-length sequences of items as they are stored in the working memory through time. A Masking Field hereby activates the learned list chunks that represent the most predictive item groupings at any time, while suppressing less predictive chunks. In a network with a given number of input items, all possible ordered sets of these item sequences, up to a fixed length, can be learned with unsupervised or supervised learning. The self-similar multiple-scale properties of Masking Fields interacting with an Item-and-Order working memory provide a natural explanation of George Miller's Magical Number Seven and Nelson Cowan's Magical Number Four. The article explains why linguistic, spatial, and action event sequences may all be stored by Item-and-Order working memories that obey similar design principles, and thus how the current results may apply across modalities. Item-and-Order properties may readily be extended to Item-Order-Rank working memories in which the same item can be stored in multiple list positions, or ranks, as in the list ABADBD. Comparisons with other models, including TRACE, MERGE, and TISK, are made.
Curiosity Driven Modular Incremental Slow Feature Analysis (CD-MISFA;) is a recently introduced model of intrinsically-motivated invariance learning. Artificial curiosity enables the orderly formation of multiple stable sensory representations to simplify the agent's complex sensory input. We discuss computational properties of the CD-MISFA model itself as well as neurophysiological analogs fulfilling similar functional roles. CD-MISFA combines 1. unsupervised representation learning through the slowness principle, 2. generation of an intrinsic reward signal through learning progress of the developing features, and 3. balancing of exploration and exploitation to maximize learning progress and quickly learn multiple feature sets for perceptual simplification. Experimental results on synthetic observations and on the iCub robot show that the intrinsic value system is essential for representation learning. Representations are typically explored and learned in order from least to most costly, as predicted by the theory of curiosity.
In order to proceed along an action sequence, an autonomous agent has to recognize that the intended final condition of the previous action has been achieved. In previous work, we have shown how a sequence of actions can be generated by an embodied agent using a neural-dynamic architecture for behavioral organization, in which each action has an intention and condition of satisfaction. These components are represented by dynamic neural fields, and are coupled to motors and sensors of the robotic agent.Here,we demonstratehowthemappings between intended actions and their resulting conditions may be learned, rather than pre-wired.We use reward-gated associative learning, in which, over many instances of externally validated goal achievement, the conditions that are expected to result with goal achievement are learned. After learning, the external reward is not needed to recognize that the expected outcome has been achieved. This method was implemented, using dynamic neural fields, and tested on a real-world E-Puck mobile robot and a simulated NAO humanoid robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.