Automated problem solving in combination with declarative specifications of search-problems have shown to substantially improve the implementation and maintenance costs as well as the man-machine interaction of deployed industrial applications. The knowledge representation and reasoning (KRR) framework of answer set programming (ASP) offers a rich representation language and high performance solvers. Therefore, ASP has become very attractive for the representation and solving of search-problems both for academia and industry. This article focuses on the latest industrial applications of ASP. We do not only present successful applications of ASP but also describe the development process and the design of ASP programs in an industrial context. Finally, we discuss current approaches to tackle the most significant application challenges such as grounding and runtime improvements by heuristics.
Real-world semantic or knowledge-based systems, e.g., in the biomedical domain, can become large and complex. Tool support for the localization and repair of faults within knowledge bases of such systems can therefore be essential for their practical success. Correspondingly, a number of knowledge base debugging approaches, in particular for ontology-based systems, were proposed throughout recent years. Query-based debugging is a comparably recent interactive approach that localizes the true cause of an observed problem by asking knowledge engineers a series of questions. Concrete implementations of this approach exist, such as the OntoDebug plug-in for the ontology editor Protégé.To validate that a newly proposed method is favorable over an existing one, researchers often rely on simulation-based comparisons. Such an evaluation approach however has certain limitations and often cannot fully inform us about a method's true usefulness. We therefore conducted different user studies to assess the practical value of query-based ontology debugging. One main insight from the studies is that the considered interactive approach is indeed more efficient than an alternative algorithmic debugging based on test cases. We also observed that users frequently made errors in the process, which highlights the importance of a careful design of the queries that users need to answer.
Efficient omission of symmetric solution candidates is essential for combinatorial problem-solving. Most of the existing approaches are instance-specific and focus on the automatic computation of Symmetry Breaking Constraints (SBCs) for each given problem instance. However, the application of such approaches to large-scale instances or advanced problem encodings might be problematic since the computed SBCs are propositional and, therefore, can neither be meaningfully interpreted nor transferred to other instances. As a result, a time-consuming recomputation of SBCs must be done before every invocation of a solver. To overcome these limitations, we introduce a new model-oriented approach for Answer Set Programming that lifts the SBCs of small problem instances into a set of interpretable first-order constraints using the Inductive Logic Programming paradigm. Experiments demonstrate the ability of our framework to learn general constraints from instance-specific SBCs for a collection of combinatorial problems. The obtained results indicate that our approach significantly outperforms a state-of-the-art instance-specific method as well as the direct application of a solver.
Stream reasoning systems are designed for complex decision-making from possibly infinite, dynamic streams of data. Modern approaches to stream reasoning are usually performing their computations using stand-alone solvers, which incrementally update their internal state and return results as the new portions of data streams are pushed. However, the performance of such approaches degrades quickly as the rates of the input data and the complexity of decision problems are growing. This problem was already recognized in the area of stream processing, where systems became distributed in order to allocate vast computing resources provided by clouds. In this paper we propose a distributed approach to stream reasoning that can efficiently split computations among different solvers communicating their results over data streams. Moreover, in order to increase the throughput of the distributed system, we suggest an interval-based semantics for the LARS language, which enables significant reductions of network traffic. Performed evaluations indicate that the distributed stream reasoning significantly outperforms existing stand-alone LARS solvers when the complexity of decision problems and the rate of incoming data are increasing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.