Compact, flexible laboratory sources offer advanced flexibility in developing components for EUV-lithography by supplementing beamlines at storage rings. Hence, they are the basis for transferring EUV-metrology and technology to individual, industrial and university R&D labs. Laboratory sources have features similar to the sources planned for EUVL production on one hand and offer high flexibility like storage ring beamlines on the other hand. Discharge based EUV sources offer some flexibility, which allow for tuning of the spectral and spatial characteristics of their emission. Depending on the system complexity sources can be supplied in various forms ranging from low budget semi-manual systems over OEM components to fully automatic stand-alone sources. As power scaling has been demonstrated by just adding higher power generators and cooling, these sources can be matched to various levels of flux requirements. AIXUV's discharge based EUV-sources have been used as beaml ine supplement for tasks closely connected with the development of EUV-Lithography. Examples are: development of tools for EUV source characterization (prototype testing, qualification and calibration), "in-band-EUV" open frame resist exposure, reflectometry of EUV mask blanks and EUV mirrors and for basic research using XUV radiation as thin film analytics and EUV microscopy
A prototype of a reflectometer for masks and mask blanks has been set-up in autumn 2003 for in-house quality check of EUV mask blanks at Schott Lithotec. The target specifications are those under discussion as SEMI standard for EUV mask blank reflectometry. Additionally, the identified demands for semiconductor capital investment for future actinic EUV metrology, high throughputs and small measuring spots, were taken into account for the tool development. Effective use of the emission from a laboratory discharge source is achieved by using polychromatic reflectometry, which has been shown to deliver results about a factor of 100 faster with the same source power and needs less mechanical overhead than a monochromatic reflectometer. The hardware concept, first results and discussion of a test of the performance with respect to resolution, uncertainty and reproducibility will be represented. Jointly with the Physikalisch-Technische Bundesanstalt's laboratory for radiometr y at BESSY II the traceability to storage ring metrology, the calibration and the validation of the concepts will be assessed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.