Background: MicroRNAs (miRNAs) are one of the most abundant groups of regulatory genes in multicellular organisms, playing important roles in many fundamental cellular processes. More than four hundred miRNAs have been identified in humans and the deregulation of miRNA expression has been also shown in many cancers. Despite the postulated involvement of miRNAs in tumourigenesis, there are only a few examples where an oncogene or a tumour suppressor has been identified as a miRNA target.
Protein-coding genes, guiding differentiation of ES cells into neural cells, have extensively been studied in the past. However, for the class of ncRNAs only the involvement of some specific microRNAs (miRNAs) has been described. Thus, to characterize the entire small non-coding RNA (ncRNA) transcriptome, involved in the differentiation of mouse ES cells into neural cells, we have generated three specialized ribonucleo-protein particle (RNP)-derived cDNA libraries, i.e. from pluripotent ES cells, neural progenitors and differentiated neural cells, respectively. By high-throughput sequencing and transcriptional profiling we identified several novel miRNAs to be involved in ES cell differentiation, as well as seven small nucleolar RNAs. In addition, expression of 7SL, 7SK and vault-2 RNAs was significantly up-regulated during ES cell differentiation. About half of ncRNA sequences from the three cDNA libraries mapped to intergenic or intragenic regions, designated as interRNAs and intraRNAs, respectively. Thereby, novel ncRNA candidates exhibited a predominant size of 18–30 nt, thus resembling miRNA species, but, with few exceptions, lacking canonical miRNA features. Additionally, these novel intraRNAs and interRNAs were not only found to be differentially expressed in stem-cell derivatives, but also in primary cultures of hippocampal neurons and astrocytes, strengthening their potential function in neural ES cell differentiation.
Mammalian transcriptomes mainly consist of non protein coding RNAs. These ncRNAs play various roles in all cells and are involved in multiple regulation pathways. More recently, ncRNAs have also been described as valuable diagnostic tools. While RNA-seq approaches progressively replace microarray-based technologies for high-throughput expression profiling, they are still not routinely used in diagnostic. Microarrays, on the other hand, are more widely used for diagnostic profiling, especially for very small ncRNA (e.g., miRNAs), employing locked nucleic acid (LNA) arrays. However, LNA microarrays are quite expensive for high-throughput studies targeting longer ncRNAs, while DNA arrays do not provide satisfying results for the analysis of small RNAs. Here, we describe a mixed DNA/LNA microarray platform, where directly labeled small and longer ncRNAs are hybridized on LNA probes or custom DNA probes, respectively, enabling sensitive and specific analysis of a complex RNA population on a unique array in one single experiment. The DNA/LNA system, requiring relatively low amounts of total RNA, which complies with diagnostic references, was successfully applied to the analysis of differential ncRNA expression in mouse embryonic stem cells and adult brain cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.