Abstract-Extreme transistor technology scaling is causing increasing concerns in device reliability: the expected lifetime of individual transistors in complex chips is quickly decreasing, and the problem is expected to worsen at future technology nodes. With complex designs increasingly relying on Networks-on-Chip (NoCs) for on-chip data transfers, a NoC must continue to operate even in the face of many transistor failures. Specifically, it must be able to reconfigure and reroute packets around faults to enable continued operation, i.e., generate new routing paths to replace the old ones upon a failure. In addition to these reliability requirements, NoCs must maintain low latency and high throughput at very low area budget.In this work, we propose a distributed reconfiguration solution named Ariadne, targeting large, aggressively scaled, unreliable NoCs. Ariadne utilizes up*/down* for fast routing at high bandwidth, and upon any number of concurrent network failures in any location, it reconfigures to discover new resilient paths to connect the surviving nodes. Experimental results show that Ariadne provides a 40%-140% latency improvement (when subject to 50 faults in a 64-node NoC) over other on-chip state-of-the-art fault tolerant solutions, while meeting the low area budget of on-chip routers with an overhead of just 1.97%.
Process Variation (PV) is increasingly threatening the reliability of Networks-on-Chips. Thus, various resilient router designs have been recently proposed and evaluated. However, these evaluations assume random fault distributions, which result in 52%-81% inaccuracy. We propose an accurate circuit-level fault-modeling tool, which can be plugged into any system-level NoC simulator, quantify the system-level impact of PV-induced faults at runtime, pinpoint fault-prone router components that should be protected, and accurately evaluate alternative resilient multi-core designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.