As we enter the era of CMP platforms with multiple threads/cores on the die, the diversity of the simultaneous workloads running on them is expected to increase. The rapid deployment of virtualization as a means to consolidate workloads on to a single platform is a prime example of this trend. In such scenarios, the quality of service (QoS) that each individual workload gets from the platform can widely vary depending on the behavior of the simultaneously running workloads. While the number of cores assigned to each workload can be controlled, there is no hardware or software support in today's platforms to control allocation of platform resources such as cache space and memory bandwidth to individual workloads. In this paper, we propose a QoS-enabled memory architecture for CMP platforms that addresses this problem. The QoS-enabled memory architecture enables more cache resources (i.e. space) and memory resources (i.e. bandwidth) for high priority applications based on guidance from the operating environment. The architecture also allows dynamic resource reassignment during run-time to further optimize the performance of the high priority application with minimal degradation to low priority. To achieve these goals, we will describe the hardware/software support required in the platform as well as the operating environment (O/S and virtual machine monitor). Our evaluation framework consists of detailed platform simulation models and a QoS-enabled version of Linux. Based on evaluation experiments, we show the effectiveness of a QoSenabled architecture and summarize key findings/trade-offs.
The DRAM main memory system in modern servers is largely homogeneous. In recent years, DRAM manufacturers have produced chips with vastly differing latency and energy characteristics. This provides the opportunity to build a heterogeneous main memory system where different parts of the address space can yield different latencies and energy per access. The limited prior work in this area has explored smart placement of pages with high activities. In this paper, we propose a novel alternative to exploit DRAM heterogeneity. We observe that the critical word in a cache line can be easily recognized beforehand and placed in a low-latency region of the main memory. Other non-critical words of the cache line can be placed in a low-energy region. We design an architecture that has low complexity and that can accelerate the transfer of the critical word by tens of cycles. For our benchmark suite, we show an average performance improvement of 12.9% and an accompanying memory energy reduction of 15%.
Data centers are increasingly employing virtualization and consolidation as a means to support a large number of disparate applications running simultaneously on server platforms. However, server platforms are still being designed and evaluated based on performance modeling of a single highly parallel application or a set of homogenous work-loads running simultaneously. Since most future datacenters are expected to employ server virtualization, this paper takes a look at the challenges of modeling virtual machine (VM) performance on a datacenter server. Based on vConsolidate (a server virtualization benchmark) and latest multi-core servers, we show that the VM modeling challenge requires addressing three key problems: (a) modeling the contention of visible resources (cores, memory capacity, I/O devices, etc), (b) modeling the contention of invisible resources (shared microarchitecture resources, shared cache, shared memory bandwidth, etc) and (c) modeling overheads of virtual machine monitor (or hypervisor) implementation. We take a first step to addressing this problem by describing a VM performance modeling approach and performing a detailed case study based on the vConsolidate benchmark. We conclude by outlining outstanding problems for future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.