As we enter the era of CMP platforms with multiple threads/cores on the die, the diversity of the simultaneous workloads running on them is expected to increase. The rapid deployment of virtualization as a means to consolidate workloads on to a single platform is a prime example of this trend. In such scenarios, the quality of service (QoS) that each individual workload gets from the platform can widely vary depending on the behavior of the simultaneously running workloads. While the number of cores assigned to each workload can be controlled, there is no hardware or software support in today's platforms to control allocation of platform resources such as cache space and memory bandwidth to individual workloads. In this paper, we propose a QoS-enabled memory architecture for CMP platforms that addresses this problem. The QoS-enabled memory architecture enables more cache resources (i.e. space) and memory resources (i.e. bandwidth) for high priority applications based on guidance from the operating environment. The architecture also allows dynamic resource reassignment during run-time to further optimize the performance of the high priority application with minimal degradation to low priority. To achieve these goals, we will describe the hardware/software support required in the platform as well as the operating environment (O/S and virtual machine monitor). Our evaluation framework consists of detailed platform simulation models and a QoS-enabled version of Linux. Based on evaluation experiments, we show the effectiveness of a QoSenabled architecture and summarize key findings/trade-offs.
In this correspondence, we address the facial expression recognition problem using kernel canonical correlation analysis (KCCA). Following the method proposed by Lyons et al. and Zhang et al., we manually locate 34 landmark points from each facial image and then convert these geometric points into a labeled graph (LG) vector using the Gabor wavelet transformation method to represent the facial features. On the other hand, for each training facial image, the semantic ratings describing the basic expressions are combined into a six-dimensional semantic expression vector. Learning the correlation between the LG vector and the semantic expression vector is performed by KCCA. According to this correlation, we estimate the associated semantic expression vector of a given test image and then perform the expression classification according to this estimated semantic expression vector. Moreover, we also propose an improved KCCA algorithm to tackle the singularity problem of the Gram matrix. The experimental results on the Japanese female facial expression database and the Ekman's "Pictures of Facial Affect" database illustrate the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.