Abstract-Deploying advanced Simultaneous Localisation and Mapping, or SLAM, algorithms in autonomous low-power robotics will enable emerging new applications which require an accurate and information rich reconstruction of the environment. This has not been achieved so far because accuracy and dense 3D reconstruction come with a high computational complexity. This paper discusses custom hardware design on a novel platform for embedded SLAM, an FPGA-SoC, combining an embedded CPU and programmable logic on the same chip. The use of programmable logic, tightly integrated with an efficient multicore embedded CPU stands to provide an effective solution to this problem. In this work an average framerate of more than 4 frames/second for a resolution of 320x240 has been achieved with an estimated power of less than 1 Watt for the custom hardware. In comparison to the software-only version, running on a dualcore ARM processor, an acceleration of 2× has been achieved for LSD-SLAM, without any compromise in the quality of the result.
Abstract-Simultaneous Localization and Mapping or SLAM, is a family of algorithms that solve the problem of estimating an observer's position in an unknown environment while generating a map of that environment. SLAM algorithms that produce high quality dense maps require powerful hardware platforms. In the simultaneous solution of these two problems, Localization, also known as Tracking, is the one that is latency sensitive and needs a sustained high framerate. This work focuses on providing an efficient, high-performance solution for Direct Tracking using a high bandwidth streaming architecture, optimized for maximum memory throughput. At its centre is a Tracking Core that performs non-linear least-squares optimization for direct wholeimage alignment. The architecture is designed to scale with the available hardware resources in order to enable its use for different performance/cost levels and platforms. An initial implementation tested with a Zynq System-on-Chip can process and track more than 22 frames/second with an embedded power budget and achieves a 5× improvement over previous work on FPGA SoCs.
The current state of the art of Simultaneous Localisation and Mapping, or SLAM, on low power embedded systems is about sparse localisation and mapping with low resolution results in the name of efficiency. Meanwhile, research in this field has provided many advances for information rich processing and semantic understanding, combined with high computational requirements for real-time processing. This work provides a solution to bridging this gap, in the form of a scalable SLAMspecific architecture for depth estimation for direct semi-dense SLAM.Targeting an off-the-shelf FPGA-SoC this accelerator architecture achieves a rate of more than 60 mapped frames/sec at a resolution of 640x480 achieving performance on par to a highly-optimised parallel implementation on a high-end desktop CPU with an order of magnitude improved power consumption. Furthermore, the developed architecture is combined with our previous work for the task of tracking, to form the first complete accelerator for semi-dense SLAM on FPGAs, establishing the state of the art in the area of embedded low-power systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.