In this study, new aspects of our research regarding a novel hybrid system able to provide focused microwave radiometric temperature and/or conductivity measurements and hyperthermia treatment via microwave irradiation are presented. On one hand, it is examined whether the system is capable of sensing real-time progressive local variations of temperature and/or conductivity in customized phantom setups; on the other hand, the focusing attributes of the system are explored for different positions and types of phantoms used for hyperthermia in conjunction with dielectric matching layers surrounding the areas of interest. The main module of the system is an ellipsoidal cavity, which provides the appropriate focusing of the electromagnetic energy on the area of interest. The system has been used for the past few years in experiments with different configuration setups including phantom, animal, and human volunteer measurements yielding promising outcome. The present results show that the system is able to detect local concentrated gradual temperature and conductivity variations expressed as an increase of the output radiometric voltage. Moreover, when contactless focused hyperthermia is performed, the results show significant temperature increase at specific phantom areas. In this case, the effect of the dielectric matching layers placed around the phantoms is critical, thus resulting in the enhancement of the energy penetration depth.
A prototype system for passive intracranial monitoring using microwave radiometry is proposed. It comprises an ellipsoidal conductive wall cavity to achieve beamforming and focusing, in conjunction with sensitive multiband receivers for detection. The system has already shown the capability to provide temperature and/or conductivity variations in phantoms and biological tissue. In this article, a variant of the initially constructed modality is theoretically and experimentally investigated. Specifically, dielectric matching materials are used in an effort to improve the system's focusing attributes. The theoretical study investigates the effect of dielectric matching materials on the system's detection depth, whereas measurements with phantoms focus on the investigation of the system's detection level and spatial resolution. The combined results suggest that the dielectric matching layers lead to the improvement of the system's detection depth and temperature detection level. Also, the system's spatial resolution is explored at various experimental setups. Theoretical and experimental results conclude that with the appropriate combination of operation frequencies and dielectric layers, it is possible to monitor areas of interest inside human head models with a variety of detection depths and spatial resolutions.
This paper presents the latest progress made concerning a hybrid diagnostic and therapeutic system able to provide focused microwave radiometric temperature and/or conductivity variation measurements and hyperthermia treatment. Previous experimental studies of our group have demonstrated the system performance and focusing properties in phantom as well as human experiments. The system is able to detect temperature and conductivity variations with frequency-dependent detection depth and spatial sensitivity. Numerous studies have also demonstrated the improvement of the system focusing properties attributed to the use of dielectric and left handed matching layers. In this study, similar experimental procedures are performed but this time using an anatomical head model as phantom aiming to achieve a more accurate modeling of the system's future real function. This way, another step is made toward the deeper understanding of the system's capabilities, with the view to further use it in experimental procedures with laboratory animals and human volunteers.
Microwave radiometry is a measurement technique which detects natural-thermal radiation emitted by matter. The human brain having certain temperature and specific electromagnetic properties emits chaotic radiation throughout the whole electromagnetic spectrum. A novel Microwave Radiometry Imaging System (MiRaIS) comprising an ellipsoidal conductive wall cavity and sensitive radiometric receivers, operating at low microwave frequencies (1-4GHz), has been used the past four years in various experiments to assess its value as a potential intracranial imaging device. With this view, current research aims at the improvement of the system's focusing properties using matching layers made of dielectric and left handed materials that are placed around a double layered human head model. Another approach tested, included filling of the whole ellipsoidal with a lossless dielectric material in conjunction with reduction of the ellipsoid's volume. The results show better focusing properties in the brain areas of interest and improvement of the system's spatial resolution. Future research including mainly phantom and human experiments implementing the above ideas will illustrate the value of the present simulation study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.