It is important to couple phenotypic analysis with genetic diversity for germplasm conservation in gene bank collections. The use of molecular markers supports the study of genetic marker-trait associations of biological and agronomic interest on diverse genetic material. In this report, 19Greek traditional sweet cherry cultivars and two international cultivars, which were used as controls, were grown in Greece and characterized for 17 morpho-physiological traits, 15 simple sequence repeat (SSR) loci and 10 inter simple sequence repeat (ISSR) markers. To our knowledge, this is the first report on molecular genetic diversity studies in sweet cherry in Greece. Principal component analysis (PCA) of nine qualitative and eight quantitative morphological parameters explain over 77.33% of total variability in the first five axes. The SSR markers yielded a combined matching probability ratio (MPR) of 9.569 9 e-12. The 15 SSR loci produced a total of 92 alleles. Ten ISSR primers generated 91 bands, with an average of 9.1 bands per primer. Expected heterozygosity (gene diversity) values of 15 SSR loci and 10 ISSR markers averaged at 0.683 and 0.369, respectively. Based on stepwise multiple regression analysis (MRA), SSR alleles were found associated with harvest time and fruit polar diameter. Furthermore, three ISSR markers were correlated with fruit harvest and soluble solids and four ISSR markers were correlated with fruit skin color. Stepwise MRA identified six SSR alleles associated with harvest time with a high correlation (P \ 0.001), with linear associations with high F values. Hence, data analyzed by the use of MRA could be useful in marker-assisted breeding programs when no other genetic information is available. Keywords Sweet cherry Á SSR/ISSR Á MRA Á Fruit association markers Á Morpho-physiological traits Abbreviations SSR Simple sequence repeat ISSR Inter simple sequence repeat AFLP Amplified fragment length polymorphism Electronic supplementary material The online version of this article (
Sweet cherries, Prunus avium L. (Rosaceae), are gaining importance due to their perenniallity and nutritional attributes beneficial for human health. Interestingly, sweet cherry cultivars exhibit a wide range of phenotypic diversity in important agronomic traits, such as flowering time and defense reactions against pathogens. In this study, wholegenome resequencing (WGRS) was employed to characterize genetic variation, population structure and allelic variants in a panel of 20 sweet cherry and one wild cherry genotypes, embodying the majority of cultivated Greek germplasm and a representative of a local wild cherry elite phenotype. The 21 genotypes were sequenced in an average depth of coverage of 33.91×. and effective mapping depth, to the genomic reference sequence of 'Satonishiki' cultivar, between 22.21× to 36.62×. Discriminant analysis of principal components (DAPC) with SNPs revealed two clusters of genotypes. There was a rapid linkage disequilibrium decay, as the majority of SNP pairs with r 2 in near complete disequilibrium (>0.8) were found at physical distances less than 10 kb. Functional analysis of the variants showed that the genomic ratio of non-synonymous/synonymous (dN/dS) changes was 1.78. The higher dN frequency in the Greek cohort of sweet cherry could be the result of artificial selection pressure imposed by breeding, in combination with the vegetative propagation of domesticated cultivars through grafting. The majority of SNPs with high impact (e.g., stop codon gaining, frameshift), were identified in genes involved in flowering time, dormancy and defense reactions against pathogens, providing promising resources for future breeding programs. Our study has established the foundation for further large scale characterization of sweet cherry germplasm, enabling breeders to incorporate diverse germplasm and allelic variants to fine tune flowering and maturity time and disease resistance in sweet cherry cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.