This contribution deals with advanced educational technologies needed to equip customers from higher education institutions, research and industry with efficient tools supporting their work and operating new skills-training methods. The challenges are reducing the training costs, improving quality and increasing the number of graduates in engineering departments. The concept of a Virtual Lab based on the combination of various teaching methods and tools is presented. Principles of mathematisation in metallurgical education and training are discussed. An example of online course designed in the form of Virtual Lab is demonstrated.
The potential of VFB(very fine bubbling)‐technology in steelmaking, developed for the production of super clean steels, was investigated. Recent R&D work has proven that with very fine argon bubbling through a developed special porous plug (SPP) at low flow rates, the total oxygen content of low carbon steel grades can be lowered to a level of 6 ppm under industrial vacuum conditions [1; 2] and to a level of 10 ppm under argon protective atmosphere [2]. The perspective of industrial application of the VFB technology to a 56‐t ladle furnace of Helliniki Halyvourgia S.A., Greece, in order to improve steel cleanliness, requires additional R&D efforts. It is important to define the limits of VFB technology in respect of alloys dissolution, mixing time and homogenisation of steel and slag/metal reactions. In this work, a gas driven bubble aqueous reactor model simulating the bottom gas stirred ladle by means of gas injection through a SPP and a conventional porous plug was studied. Various operating conditions as well as different positions for the porous plug with and without a top oil layer were simulated. Tests concerning mixing time, solid‐liquid mass transfer and critical gas flow rate, liquid/liquid mass transfer, using the SPP and a conventional porous plug have been performed. The evaluation of experimental results delivered important information for the design and operation of steel ladles, applying VFB‐technology. Experimental results with SPP bubbles’ agitated steel (1600 °C) in laboratory and technical scale experiments in IF and VIF are presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.