Aortic valve stenosis is one of the most common valvular heart disorders and the prevalence will rise as the population ages. Once symptomatic, patients with aortic valve stenosis tend to fare worse with high mortality rates. Aortic valve replacement is indicated in these patients and besides the standard surgical replacement; a less invasive approach, transcatheter aortic valve implantation, has gained momentum and has showed promising and solid results in patients with high surgical risk. An important aspect of evaluating patients with aortic valve stenosis is the ability to choose the best possible candidate for the procedure. In addition, predicting the short and long-term clinical outcomes after the valve replacement could offer the treating physicians a better insight and provide information for optimal therapy. Biomarkers are biological parameters that can be objectively measured and evaluated as indicators of normal biological processes and are easily monitored. The aim of this review is to critically assess some of the most widely used biomarkers at present (natriuretic peptides, troponins, C-reactive protein) and provide an insight in novel biomarkers that are currently being investigated (galectin-3, growth differentiation factor-15, microRNAs) for possible diagnostic and prognostic use in aortic valve stenosis and transcatheter aortic valve implantation respectively.
Carotid plaque neovascularisation on CEUS examination is associated with increased thermal heterogeneity and ultrasound characteristics of plaque vulnerability in intermediate lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.