This work pursues the potential of extending “Industry 4.0” practices to farming toward achieving “Agriculture 4.0”. Our interest is in fruit harvesting, motivated by the problem of addressing the shortage of seasonal labor. In particular, here we present an integrated system architecture of an Autonomous Robot for Grape harvesting (ARG). The overall system consists of three interdependent units: (1) an aerial unit, (2) a remote-control unit and (3) the ARG ground unit. Special attention is paid to the ARG; the latter is designed and built to carry out three viticultural operations, namely harvest, green harvest and defoliation. We present an overview of the multi-purpose overall system, the specific design of each unit of the system and the integration of all subsystems. In addition, the fully sensory-based sensing system architecture and the underlying vision system are analyzed. Due to its modular design, the proposed system can be extended to a variety of different crops and/or orchards.
Globalization of markets involves new strategies and price policies from professionals that contribute to global competitiveness. Airline companies are changing tickets' prices very often considering a variety of factors based on their proprietary rules and algorithms that are searching for the most suitable price policy. Recently, Artificial Intelligence (AI) models are exploited for the latter task, due to their compactness, fast adaptability, and many potentials in data generalization. This paper represents an analysis of airfare price prediction towards finding similarities in the pricing policies of different Airline companies by using AI Techniques. More specifically, a set of effective features is extracted from 136.917 data flights of Aegean, Turkish, Austrian and Lufthansa Airlines for six popular international destinations. The extracted set of features is then used to conduct a holistic analysis from the perspective of the end user who seeks the most affordable ticket cost, considering a destination-based evaluation including all airlines, and an airline-based evaluation including all destinations. For the latter cause, AI models from three different domains and a total of 16 model architectures are considered to resolve the airfare price prediction problem: Machine Learning (ML) with eight state-of-the-art models, Deep Learning (DL) with six CNN models and Quantum Machine Learning (QML) with two models. Experimental results reveal that at least three models from each domain, ML, DL, and QML, are able to achieve accuracies between 89% and 99% in this regression problem, for different international destinations and airline companies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.