The shape of the tympanic membrane (TM) plays an important role in sound transmission through the ear for hearing. Previously we developed a high-speed holographic system employing a tunable wavelength laser for rapid TM shape measurement. However, the tunable laser illumination was not sufficient to measure the shape of the unpainted TM due to the semi-transparency of the TM and short exposure time of the camera. This paper presents a new multiple angle illumination technique that allows us to use a higher power single wavelength laser to perform shape measurements on the unpainted TM. Accuracy of the new method is demonstrated by a measure of a step gauge provided by the National Institute of Standards and Technology. We successfully applied the new shape measurement method on a fresh postmortem human TM without any paint.
To improve the understanding of the middle-ear hearing mechanism and assist in the diagnosis of middle-ear diseases, we are developing a high-speed digital holographic (HDH) system to measure the shape and acoustically-induced transient displacements of the tympanic membrane (TM). In this paper, we performed measurements on cadaveric human ears with simulated common middle-ear pathologies. The frequency response function (FRF) of the normalized displacement by the stimulus (sound pressure) at each measured pixel point of the entire TM surface was calculated and the complex modal indicator function (CMIF) of the middle-ear system based on FRFs of the entire TM surface motions was used to differentiate different middle-ear pathologies. We also observed changes in the TM shape and the surface motion pattern before and after various middle-ear manipulations. The observations of distinguishable TM shapes and motion patterns in both time and frequency domains between normal and experimentally simulated pathological ears support the development of a quantitative clinical holography-based apparatus for diagnosing middle-ear pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.