The present research focuses on nanoparticle suspensions and flow properties in the context of their applications. The application of these materials in biological rheological models has piqued the attention of many researchers. Magneto nanoparticles have an important function in controlling the viscoelastic physiognomies of ferrofluid flows. Having such substantial interest in the flow of ferroliquids our vision is to discuss the stagnation point flow of ferromagnetic Oldroyd-B nanofluid through a stretching sheet. The Buongiorno nanofluid model with Brownian motion and thermophoretic properties is examined. A chemical reaction effect and porous medium is also taken into account. Moreover, the modelled equations are changed to ordinary differential equations (ODEs) using suitable similarity transformations. Which are then solved using classical Runge-Kutta (RK) process with shooting technique. The solutions for the flow, thermal, concentration, skin friction, rate of heat and mass transfer features are attained numerically and presented graphically. The significant results of the current study are that, the growing values of ferromagnetic interaction parameter and porosity parameter declines the velocity profile. The rising values of chemical reaction rate parameter and Brownian motion parameter declines the mass transfer but inverse behaviour is seen for augmented values of thermophoresis parameter.
The rheology of non-Newtonian liquids has fascinated several researchers due to their wide-ranging applications in manufacturing and engineering sectors like plastic processing, the mining industry, and lubrication. Also, the features of ferromagnetic non-Newtonian fluids make it supportive for extensive usage in loudspeakers, magnetic resonance imaging, computer hard drives, directing of magnetic drugs, and magnetic hyperthermia. Owing to such potential applications, the current study is concerned with the heat and mass transfer analysis in a ferromagnetic Jeffrey liquid flow over a stretching sheet. In the flow problem, Brownian moment, magnetic dipole, and thermophoresis features are used. The active and passive
The properties of ferromagnetic fluids make them suitable for a wide range of applications, including loudspeakers, magnetic resonance imaging, computer hard drives, magnetic drug delivery, and magnetic hyperthermia. Owing to all such potential applications, the present research work is established to explain the stagnation point flow, heat, and mass transfer of Walters-B liquid in the presence of magnetic dipole, Brownian diffusion, and thermophoresis. To control
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.