Throughout the last decade, augmented reality (AR) head-mounted displays (HMDs) have gradually become a substantial part of modern life, with increasing applications ranging from gaming and driver assistance to medical training. Owing to the tremendous progress in miniaturized displays, cameras, and sensors, HMDs are now used for the diagnosis, treatment, and follow-up of several eye diseases. In this review, we discuss the current state-of-the-art as well as potential uses of AR in ophthalmology. This review includes the following topics: (i) underlying optical technologies, displays and trackers, holography, and adaptive optics; (ii) accommodation, 3D vision, and related problems such as presbyopia, amblyopia, strabismus, and refractive errors; (iii) AR technologies in lens and corneal disorders, in particular cataract and keratoconus; (iv) AR technologies in retinal disorders including age-related macular degeneration (AMD), glaucoma, color blindness, and vision simulators developed for other types of low-vision patients.
Computer-generated holography algorithms often fall short in matching simulations with results from a physical holographic display. Our work addresses this mismatch by learning the holographic light transport in holographic displays. Using a camera and a holographic display, we capture the image reconstructions of optimized holograms that rely on ideal simulations to generate a dataset. Inspired by the ideal simulations, we learn a complex-valued convolution kernel that can propagate given holograms to captured photographs in our dataset. Our method can dramatically improve simulation accuracy and image quality in holographic displays while paving the way for physically informed learning approaches.
Cataract is the most common cause of preventable blindness and vision loss where the only treatment is surgical replacement of the natural lens with an intraocular lens. Computer-generated holography (CGH) enables to control phase, size, and shape of the light beam entering through the eye-pupil. We developed a holographic vision simulator to assess visual acuity for patients to experience the postoperative corrected vision before going through surgery. A holographically shaped light beam is directed onto the retina using small non-cataractous regions of the lens with the help of a pupil tracker. A Snellen chart hologram is shown to subjects at desired depth with myopia and hyperopia correction. Tests with 13 patients demonstrated substantial improvements in visual acuity and the simulator results are consistent with the post-operative vision tests. Holographic simulator overperforms the existing vision simulators, which are limited to static pinhole exit pupils and incapable of correcting aberrations.
¸it ‡ ‡ UCL Figure 1: Simulated reconstuctions of metameric varifocal holograms. Our holograms reconstruct single-plane images at the correct focus levels, reconstructing high-resolution visuals at a user's fovea while displaying statistically correct content across their peripheral vision indistinguishable from the target images (metamers). Top row: simulated image reconstructions at two different focus levels (gaze location marked with a dot). Bottom row: zoomed-in insets from these two reconstructions. All foveated images in this paper are best viewed at a 60 cm wide display from a distance of 80 cm. (Three-dimensional assets from Vil ém Duha ©2021
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.