A formal total synthesis of pancratistatin was accomplished by conversion of advanced intermediates, used in the synthesis of narciclasine, to pancratistatin precursors via Myers’ reductive transposition as the key strategic step. The synthesis began with the whole cell fermentation of m-dibromobenzene with JM109(pDTG601a), a recombinant strain that over-expresses toluene dioxygenase, which provided the corresponding cis-dihydrodiol 16 as a single isomer with complete optical purity. The key reductive transposition of the allylic alcohol 8a to olefin 9a allowed for further installation of the C-1/C-2 trans-diol, required for the pancratistatin scaffold, through the introduction of a cyclic sulfate and its subsequent opening. The formal synthesis of pancratistatin was accomplished in 14 steps (12 operations) from commercially available m-dibromobenzene. Experimental and spectral data are provided for all new compounds.
The base-catalyzed condensation reaction between (E)-4-phenylbut-2-enal and phenylpropargyl aldehyde recently reported in the literature to provide formylcyclobutadiene was repeated under the published conditions. The product obtained was identified as (E)-5-phenyl-2-((E)-styryl)pent-2-en-4-ynal rather than the reported 2phenyl-3-styrylcyclobutadiene-1-carboxaldehyde. The structure assignment is supported by NMR and IR data and a x-ray structure of the crystalline alcohol obtained by Luche reduction.
A 15-step chemoenzymatic total synthesis of C-1 methoxycarbonyl narciclasine (10) was accomplished. The synthesis began with the toluene dioxygenase-mediated dihydroxylation of ortho-dibromobenzene to provide the corresponding cis-dihydrodiol (12) as a single enantiomer. Further key steps included a nitroso Diels–Alder reaction and an intramolecular Heck cyclization. The C-1 homolog 10 was tested and evaluated for antiproliferative activity against natural narciclasine (1) as the positive control. Experimental and spectral data are reported for all novel compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.