Photoacoustic imaging is a noninvasive biomedical imaging modality for visualizing the internal structure and function of soft tissues. Conventionally, an image proportional to the absorbed optical energy is reconstructed from measurements of light-induced acoustic emissions. We describe a simple iterative algorithm to recover the distribution of optical absorption coefficients from the image of the absorbed optical energy. The algorithm, which incorporates a diffusion-based finite-element model of light transport, converges quickly onto an accurate estimate of the distribution of absolute absorption coefficients. Two-dimensional examples with physiologically realistic optical properties are shown. The ability to recover optical properties (which directly reflect tissue physiology) could enhance photoacoustic imaging techniques, particularly methods based on spectroscopic analysis of chromophores.
In medical imaging different techniques have been developed to gain information from inside a tissue. Optoacoustics is a method to generate tomography pictures of tissue using Q-switched laser pulses. Due to thermal and pressure confinement, a short light pulse generates a pressure distribution inside tissue, which mirrors absorbing structures and can be measured outside the tissue. Using a temporal back-projection method, the pressure distribution measured on the tissue surface allows us to gain a tomography picture of the absorbing structures inside tissue. This study presents a novel computational algorithm, which, at least in principle, yields an exact reconstruction of the absorbing structures in three-dimensional space inside the tissue. The reconstruction is based on 2D pressure distributions captured outside at different delay times. The algorithm is tested in a simulation and back-projection of pressure transients of a small absorber and a single point source.
Theoretical and experimental aspects of two-dimensional (2D) biomedical photoacoustic imaging have been investigated. A 2D Fourier-transform-based reconstruction algorithm that is significantly faster and produces fewer artifacts than simple radial backprojection methods is described. The image-reconstruction time for a 208 x 482 pixel image is approximately 1 s. For the practical implementation of 2D photoacoustic imaging, a rectangular detector geometry was used to obtain an anisotropic detection sensitivity in order to reject out-of-plane signals, thereby permitting a tomographic image slice to be reconstructed. This approach was investigated by the numerical modeling of the broadband directional response of a rectangular detector and imaging of various spatially calibrated absorbing targets immersed in a turbid phantom. The experimental setup was based on a Q-switched Nd:YAG excitation laser source and a mechanically line-scanned Fabry-Perot polymer-film ultrasound sensor. For a 800 microm x 200 microm rectangular detector, the reconstructed image slice thickness was 0.8 mm up to a vertical distance of z = 3.5 mm from the detector, increasing thereafter to 2 mm at z = 10 mm. Horizontal and vertical spatial resolutions within the reconstructed slice were approximately 200 and 60 microm, respectively.
Two-dimensional detection of ultrasonic waves is based on pressure-induced changes of optical reflectance at a glass–liquid interface, imaged with a time-gated video camera. The method is used to record optoacoustic waves generated after irradiation of optically absorbing targets with 6 ns long laser pulses. Measurements of absolute pressure values with high temporal and spatial resolution (in the range of 10 ns and 10 μm, respectively) is demonstrated. The sensitivity is varied between 0.19% and 0.81% gray level modulation per bar. The detector plane is optically transparent, making it possible to irradiate the sample through the detector without disturbing the acoustic measurement. Two-dimensional recording of ultrasonic waves is ideally suited for the analysis of acoustic emission from small sources and for optoacoustic imaging of optical absorption differences in an opaque material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.