Fabrication of transition metal dichalcogenide quantum dots (QDs) is complex and requires submerging powders in binary solvents and constant tuning of wavelength and pulsed frequency of light to achieve a desired reaction. Instead of liquid state photoexfoliation, we utilize infrared laser irradiation of free-standing MoS2 flakes in transmission electron microscope (TEM) to achieve solid-state multi-level photoexfoliation of QDs. By investigating the steps involved in photochemical reaction between the surface of MoS2 and the laser beam, we gain insight into each step of the photoexfoliation mechanism and observe high yield production of QDs, led by an inhomogeneous crystalline size distribution. Additionally, by using a laser with a lower energy than the indirect optical transition of bulk MoS2, we conclude that the underlying phenomena behind the photoexfoliation is from multi-photon absorption achieved at high optical outputs from the laser source. These findings provide an environmentally friendly synthesis method to fabricate QDs for potential applications in biomedicine, optoelectronics, and fluorescence sensing.
The thermal and radiation stability of free-standing ceramic nanoparticles that are under consideration as potential fillers for the improved thermal and radiation stability of polymeric matrices were investigated by a set of transmission electron microscopy (TEM) studies. A series of lanthanide-doped ceria (Ln:CeOx; Ln = Nd, Er, Eu, Lu) nanocubes/nanoparticles was characterized as synthesized prior to inclusion into the polymers. The Ln:CeOx were synthesized from different solution precipitation (oleylamine (ON), hexamethylenetetramine (HMTA) and solvothermal (t-butylamine (TBA)) routes. The dopants were selected to explore the impact that the cation has on the final properties of the resultant nanoparticles. The baseline CeOx and the subsequent Ln:CeOx particles were isolated as: (i) ON-Ce (not applicable), Nd (34.2 nm), Er (27.8 nm), Eu (42.4 nm), and Lu (287.4 nm); (ii) HMTA-Ce (5.8 nm), Nd (6.6 nm), Er (370.0 nm), Eu (340.6 nm), and Lu (287.4 nm); and (iii) TBA-Ce (4.1 nm), Nd (5.0 nm), Er (3.8 nm), Eu (7.3 nm), and Lu (3.8 nm). The resulting Ln:CeOx nanomaterials were characterized using a variety of analytical tools, including: X-ray fluorescence (XRF), powder X-ray diffraction (pXRD), TEM with selected area electron diffraction (SAED), and energy dispersive X-ray spectroscopy (EDS) for nanoscale elemental mapping. From these samples, the Eu:CeOx (ON, HMTA, and TBA) series were selected for stability studies due to the uniformity of the nanocubes. Through the focus on the nanoparticle properties, the thermal and radiation stability of these nanocubes were determined through in situ TEM heating and ex situ TEM irradiation. These results were coupled with data analysis to calculate the changes in size and aerial density. The particles were generally found to exhibit strong thermal stability but underwent amorphization as a result of heavy ion irradiation at high fluences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.