The improvement of load forecasting accuracy is an important issue in the scientific optimization of power systems. The availability of accurate statistical data and a suitable scientific method are necessary for a perfect prediction of future occurrences. This research deals with the use of a regression forecast model (Support Vector Machine, SVM) for the prediction of the vector data for electrical power loading and temperature in Baghdad city. The Firefly algorithm was used to optimize the parameters of the SVM to improve its prediction accuracy. The quantitative statistical performance evaluation measures (absolute proportional error (MAPE)) were used to evaluate the performance of the optimization methods. The results proved that the modification method was more accurate compared to the basic method and PSO-SVM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.