Ghrelin, an endogenous ligand for the GH secretagogue receptor, was isolated from rat stomach and is involved in a novel system for regulating GH release. Although previous studies in rodents suggest that ghrelin is also involved in energy homeostasis and that ghrelin secretion is influenced by feeding, little is known about plasma ghrelin in humans. To address this issue, we studied plasma ghrelin-like immunoreactivity levels and elucidated the source of circulating ghrelin and the effects of feeding state on plasma ghrelin-like immunoreactivity levels in humans. The plasma ghrelin-like immunoreactivity concentration in normal humans measured by a specific RIA was 166.0 +/- 10.1 fmol/ml. Northern blot analysis of various human tissues identified ghrelin mRNA found most abundantly in the stomach and plasma ghrelin-like immunoreactivity levels in totally gastrectomized patients were reduced to 35% of those in normal controls. Plasma ghrelin-like immunoreactivity levels were increased by 31% after 12-h fasting and reduced by 22% immediately after habitual feeding. In patients with anorexia nervosa, plasma ghrelin-like immunoreactivity levels were markedly elevated compared with those in normal controls (401.2 +/- 58.4 vs. 192.8 +/- 19.4 fmol/ml) and were negatively correlated with body mass indexes. We conclude that the stomach is a major source of circulating ghrelin and that plasma ghrelin-like immunoreactivity levels reflect acute and chronic feeding states in humans.
Leptin is an adipocyte-derived blood-borne satiety factor that acts on its cognate leptin receptor (Ob-R) in the hypothalamus, thereby regulating food intake and energy expenditure. To explore whether mutations in the Ob-R gene cause obesity in humans, we have searched for mutations in the gene for Ob-Rb, a biologically active receptor isoform, in obese Japanese subjects. We have also examined associations between such mutants and obesity in the Japanese. Genomic DNAs were used as templates in polymerase chain reaction (PCR) with primers selected to amplify exons 2 to 20 of the human Ob-Rb gene. Direct sequence analysis of the PCR products revealed 7 nucleotide sequence variants (Lys109Arg, Gln223Arg, Ser343Ser, Ser492Thr, Lys656Asn, Ala976Asp, and Pro1019Pro) in the Ob-Rb coding region from 17 obese Japanese subjects with a family history of obesity (BMI 39.3 +/- 8.4 kg/m2). No missense and nonsense mutations were found such as those in Zucker fatty (fa/fa) rats and Koletsky (fa[k]/ fa[k]) rats. Nucleotide substitutions occurred at relatively high frequencies at codons 109, 223, 976, and 1019 (79, 91, 100, and 85%, respectively). Allele frequency of each variant determined by PCR-RFLP and PCR-single strand conformation polymorphism analyses showed no significant differences between 47 obese (BMI 35.1 +/- 6.5 kg/m2) and 68 non-obese (BMI 21.6 +/- 2.2 kg/m2) subjects. The present study represents the first report of sequence variants of the Ob-Rb gene in the Japanese and provides evidence against either obesity-causing mutations or association of sequence variants with obesity in obese Japanese subjects.
PGE2 is one of the key molecules in the osteoblast. It is the major prostanoid in the bone, and its production is under the control of both systemic and local factors. PGE2 has been reported to have multiple actions in the osteoblast, such as growth promotion and cell differentiation. To better understand the action of PGE2 in the osteoblast, we determined the PGE receptor subtypes in MC3T3-E1, an osteoblastic cell line derived from the normal mouse calvaria. Northern blot analysis revealed that EP1 and EP4 subtypes are expressed in MC3T3-E1. In contrast, EP3 subtype was not detected by either Northern blot analysis or RT-PCR. The contribution of each subtype was evaluated by studying the effects of subtype-specific analogs on osteoblastic function at confluency and 5 days after confluency. An EP1 agonist, 17-phenyl-omega-trinor PGE2, increased DNA synthesis and decreased alkaline phosphatase activity. 11-Deoxy-PGE1, and EP2 and EP4 agonist, decreased DNA synthesis and increased alkaline phosphatase activity at both stages. Butaprost, an EP2-selective agonist, showed effects similar to those of 11-deoxy-PGE1 only at confluency. Another and more differentiated osteoblastic marker, osteocalcin production, was detectable and was stimulated by 11-deoxy-PGE1 only 5 days after confluency. The exposure of these cells to EP1 agonist changed the cell shape to a more fibroblastic appearance. These results indicate that EP1, EP4, and probably EP2 are present in MC3T3-E1 cells; EP1 promotes cell growth, and EP2 and EP4 mediate differentiation of the osteoblast. Furthermore, the decreased response to EP2-specific agonist 5 days after confluency suggests that the expression of PGE receptor subtype is dependent on the stage of osteoblastic differentiation. This is the first report to determine PGE receptor subtypes in the bone.
A recent large-scale study revealed that glucocorticoid treatment increased fracture risk, which occurred at a far smaller dose and by a shorter duration than previously thought. To study the underlying mechanism for the increased risk of fracture, we studied the early changes in bone mineral density (BMD) and body composition by dual energy X-ray absorptiometry (DXA) after initiating high-dose glucocorticoid treatment. High-dose glucocorticoid treatment was arbitrarily defined as daily doses of >or=40 mg of a predonisolone equivalent. The 33 patients enrolled in this study had not received glucocorticoid treatment before. Only 2 months of treatment resulted in substantial BMD loss, most markedly in the lumbar spine, followed by the femoral neck and total body, which suggests the preferential trabecular bone loss. Body composition was also greatly affected. Thus, 2-month treatment with glucocorticoid significantly reduced bone mineral content (BMC), lean body mass (LBM) and increased fat mass (FAT). Our results are likely to have some clinical relevance. First, BMD loss occurs quite rapidly after starting glucocorticoid treatment, and patients receiving glucocorticoid treatment should be more carefully monitored for their BMD. Second, LBM, which mainly represents muscle volume, decreases rapidly after initiating glucocorticoid treatment. Decreased LBM might be also responsible for the increased risk of fracture, since falling is a well-known risk factor for fracture, and patients receiving glucocorticoid treatment should also be evaluated for their body composition.
Prostaglandin E2 (PGE2) exerts its effects through the PGE receptor that consists of four subtypes (EP1, EP2, EP3, and EP4). Osteoclast formation in the coculture of primary osteoblastic cells (POB) and bone marrow cells was enhanced more by 11-deoxy-PGE1 (an EP4 and EP2 agonist) than by butaprost (an EP2 agonist) and other agonists, which suggests that EP4 is the main factor in PGE2-induced osteoclast formation. PGE2-induced osteoclast formation was not observed in the coculture of POB from EP4-deficient (EP4 k/o) mice and spleen cells from wild-type (w/t) mice, whereas osteoclasts were formed in the coculture of POB from w/t mice and spleen cells from EP4-k/o mice. In situ hybridization (ISH) showed that EP4 messenger RNA (mRNA) was expressed on osteoblastic cells but not on multinucleated cells (MNCs) in w/t mice. These results indicate that PGE2 enhances osteoclast formation through its EP4 subtype on osteoblasts. Osteoclast formation by interleukin 1alpha (IL-1alpha), tumor necrosis factor alpha (TNF-alpha), basic fibroblast growth factor (bFGF), and lipopolysaccharide (LPS) was hardly observed in the coculture of POB and bone marrow cells, both from EP4-k/o mice, which shows the crucial involvement of PG and the EP4 subtype in osteoclast formation by these molecules. In contrast, osteoclast formation by 1,25-hydroxyvitamin D3 (1,25(OH)2D3) was not impaired and that by parathyroid hormone (PTH) was only partially impaired in EP4-k/o mice, which may be related to the fact that EP4-k/o mice revealed no gross skeletal abnormalities. Because it has been suggested that IL-1alpha, TNF-alpha, bFGF, and LPS are involved in inflammatory bone loss, our work can be expected to contribute to an understanding of the pathophysiology of these conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.