Ghrelin is a recently identified endogenous ligand for the GH secretagogue receptor and is involved in a novel system for regulating GH release. However, little is known about its GH-releasing activity and other endocrine effects in humans. To address this issue, we studied the GH, ACTH, cortisol, PRL, LH, FSH, and TSH responses to synthetic human ghrelin. In four normal male adults (28-37 yr), iv ghrelin administration released GH in a dose-dependent manner and 0.2, 1.0, and 5.0 microg/kg ghrelin produced 43.3 +/- 6.0, 81.5 +/- 12.7, and 107.0 +/- 10.7 ng/mL of the GH peak values at 30 min, respectively. ACTH, cortisol, and PRL levels were also elevated after ghrelin injection, while the lowest dose (0.2 microg/kg) resulted in only minimum peak values of these hormones (22.8 +/- 3.0 pg/mL, 9.4 +/- 1.9 microg/dL, and 4.6 +/- 0.6 ng/mL, respectively). There were no significant changes in LH, FSH, or TSH levels. This is the first study showing evidence that ghrelin strongly stimulates GH release in humans.
Ghrelin, an endogenous ligand for the GH secretagogue receptor, was isolated from rat stomach and is involved in a novel system for regulating GH release. Although previous studies in rodents suggest that ghrelin is also involved in energy homeostasis and that ghrelin secretion is influenced by feeding, little is known about plasma ghrelin in humans. To address this issue, we studied plasma ghrelin-like immunoreactivity levels and elucidated the source of circulating ghrelin and the effects of feeding state on plasma ghrelin-like immunoreactivity levels in humans. The plasma ghrelin-like immunoreactivity concentration in normal humans measured by a specific RIA was 166.0 +/- 10.1 fmol/ml. Northern blot analysis of various human tissues identified ghrelin mRNA found most abundantly in the stomach and plasma ghrelin-like immunoreactivity levels in totally gastrectomized patients were reduced to 35% of those in normal controls. Plasma ghrelin-like immunoreactivity levels were increased by 31% after 12-h fasting and reduced by 22% immediately after habitual feeding. In patients with anorexia nervosa, plasma ghrelin-like immunoreactivity levels were markedly elevated compared with those in normal controls (401.2 +/- 58.4 vs. 192.8 +/- 19.4 fmol/ml) and were negatively correlated with body mass indexes. We conclude that the stomach is a major source of circulating ghrelin and that plasma ghrelin-like immunoreactivity levels reflect acute and chronic feeding states in humans.
Ghrelin is a novel growth hormone-releasing peptide with a unique acylated structure. Here we reveal that preproghrelin gene is expressed in the mouse kidney and glomerulus. We also show by reverse-phase high performance liquid chromatography coupled with radioimmunoassay that the mouse kidney does produce ghrelin. The ghrelin immunoreactivity in the mouse kidney is 6.79 þ 0.48 fmol/mg (n = 5), which is much more abundant than that in the mouse plasma of 0.339 þ 0.029 fmol/W Wl (n = 6). Furthermore, prepro-ghrelin gene is expressed in cultured rat mesangial cells, fibroblast-like NRK-49F cells and mouse podocytes, but not in rat epithelial cell-like NRK-52E cells. Ghrelin receptor gene is also expressed in the rat kidney. These findings demonstrate that the kidney, glomerulus and renal cells express prepro-ghrelin gene and ghrelin is produced locally in the kidney, and suggest the endocrine and/or paracrine roles of ghrelin in the kidney. ß
Ghrelin is an acylated peptide, whose lipid modification is essential for its biological activities. Previous studies demonstrated that it strongly stimulates GH release and has a potent orexigenic action. Meanwhile, there is enough evidence showing that feeding states influence plasma ghrelin levels. Fasting stimulates ghrelin secretion, and feeding reduces plasma ghrelin levels. In this study we examined the regulation of plasma ghrelin by fasting in genetically obese animals considering its molecular forms. Plasma levels of active form of ghrelin as well as those of total ghrelin were reduced in ob/ob and db/db mice compared with those in their control mice. Zucker fatty (fa/fa) rats also showed lower plasma ghrelin levels by fasting than the control rats. Insulin-induced hypoglycemia, however, stimulated ghrelin secretion in the fasted fatty rats. Moreover, glucose injection was revealed to reduce plasma ghrelin levels in rats. The effect of the severity of obesity on secretory regulation of ghrelin was also studied. Older fatty rats showed low plasma ghrelin levels even after 48-h fasting. These data suggest that the short-term secretory regulation of total ghrelin and the active form of ghrelin is delayed in obese animals and that blood glucose levels may be involved in the delayed regulation.
Immune checkpoint inhibitors (ICIs) have become a promising treatment for advanced malignancies. However, these drugs can induce immune-related adverse events (irAEs) in several organs, including skin, gastrointestinal tract, liver, muscle, nerve, and endocrine organs. Endocrine irAEs comprise hypopituitarism, primary adrenal insufficiency, thyroid dysfunction, hypoparathyroidism, and type 1 diabetes mellitus. These conditions have the potential to lead to life-threatening consequences, such as adrenal crisis, thyroid storm, severe hypocalcemia, and diabetic ketoacidosis. It is therefore important that both endocrinologists and oncologists understand the clinical features of each endocrine irAE to manage them appropriately. This opinion paper provides the guidelines of the Japan Endocrine Society and in part the Japan Diabetes Society for the management of endocrine irAEs induced by ICIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.