Core stability training has beneficial effects on trunk function, standing balance, and mobility in stroke patients. Our findings might provide support for introducing core stability training in stroke rehabilitation.
Background:Somatosensory function has been frequently overlooked in clinics and research in the field of chronic stroke. The effects of neurorehabilitation interventions on sensory processing have still to be investigated using electrophysiological means.This study investigated the effect of hybrid assistive neuromuscular dynamic stimulation (HANDS) therapy utilizing closed-loop electromyography-controlled neuromuscular electrical stimulation (NMES), on sensory changes and cortical plasticity among patients with chronic stroke.Methods:This study was a prespecified analysis of 23 participants involved in an ongoing large interventional study. Patients with severe upper limb hemiplegia dues to chronic stroke underwent 3 weeks of inpatient HANDS therapy, where daily treatment consisted of 8 h of NMES combined with wrist splinting, 90 min of comprehensive occupational therapy, and the practice of bimanual activities of daily living. Somatosensory evoked potentials (SEPs) and functional sensory assessments, including the Semmes–Weinstein monofilament test (SWMT) and thumb localizing test (TLT), were compared pre and post-treatment.Results:While no significant recovery of tactile sensation was observed, significant improvements in proprioception and motor function were induced. The number of cortical peaks significantly increased in the median nerve, but not in the tibial nerve. A total of 9 out of 11 participants who initially lacked certain peaks responded to treatment. Further analysis revealed a significant improvement in latency and amplitude of SEP peaks.Conclusions:Our results suggest that NMES-based neurorehabilitation induces certain plastic changes in the primary sensory cortex and in cortices associated with sensorimotor processing in people with chronic stroke sequelae, which may explain the observed improvements in proprioception.
We aimed to investigate whether a newly defined distance in the lower limb can capture the characteristics of hemiplegic gait compared to healthy controls. Three-dimensional gait analyses were performed on 42 patients with chronic stroke and 10 age-matched controls. Pelvis-toe distance (PTD) was calculated as the absolute distance between an anterior superior iliac spine marker and a toe marker during gait normalized by PTD in the bipedal stance. The shortening peak during the swing phase was then quantified as PTDmin. The sagittal clearance angle, the frontal compensatory angle, gait speed, and the observational gait scale were also collected. PTDmin in the stroke group showed less shortening on the affected side and excessive shortening on the non-affected side compared to controls. PTDmin on the affected side correlated negatively with the sagittal clearance peak angle and positively with the frontal compensatory peak angle in the stroke group. PTDmin in stroke patients showed moderate to high correlations with gait speed and observational gait scale. PTDmin adequately reflected gait quality without being affected by apparent improvements due to frontal compensatory patterns. Our results showed that various impairments and compensations were included in the inability to shorten PTD, which can provide new perspectives on gait rehabilitation in stroke patients.
Genu recurvatum (knee hyperextension) is a common problem after stroke. It is important to promote the coordination between knee and ankle movements during gait; however, no study has investigated how multi-joint assistance affects genu recurvatum. We are developing a gait training technique that uses robotized knee-ankle-foot orthosis (KAFO) to assists the knee and ankle joints simultaneously. This report aimed to investigate the safety of robotized KAFO-assisted gait training (Experiment 1) and a clinical trial to treat genu recurvatum in a patient with stroke (Experiment 2). Six healthy participants and eight patients with chronic stroke participated in Experiment 1. They received robotized KAFO-assisted gait training for one or 10 sessions. One patient with chronic stroke participated in Experiment 2 to investigate the effect of robotized KAFO-assisted gait training on genu recurvatum. The patient received the training for 30 min/day for nine days. The robot consisted of KAFO and an attached actuator of four pneumatic artificial muscles. The assistance parameters were adjusted by therapists to prevent genu recurvatum during gait. In Experiment 2, we evaluated the knee joint angle during overground gait, Fugl-Meyer Assessment of lower extremity (FMA-LE), modified Ashworth scale (MAS), Gait Assessment and Intervention Tool (G.A.I.T.), 10-m gait speed test, and 6-min walk test (6MWT) before and after the intervention without the robot. All participants completed the training in both experiments safely. In Experiment 2, genu recurvatum, FMA-LE, MAS, G.A.I.T., and 6MWT improved after robotized KAFO-assisted gait training. The results indicated that the multi-joint assistance robot may be effective for genu recurvatum after stroke.
Objective : To determine whether or not the time difference index of the Timed Up and Go test TUG and the imagined TUG iTUG , which reflects motor imagery capacity, has utility in predicting falls in patients with stroke. Method : A follow-up study of falls occurring over the 6-month period after discharge was performed in 47 patients with stroke. Baseline values were evaluated at discharge for subject age, sex, disease name, paralysis side, disease duration, fall history, whether a gait assistive device was used, mini-mental state examination MMSE , TUG, and the time difference delta time between TUG and iTUG. A logistic regression analysis was performed using the number of falls and evaluation results, and the predictive factors for falls were extracted. Results : Thirty-three patients were followed for the entire 6-month period, and the fall rate was 48.5According to the results of the analysis, only delta time was a significant fall factor p 0.01 , and the cutoff value for fall prediction was 0.88 . Conclusion : Our results show that delta time could be used to identify the likelihood of a fall occurrence over the 6-month period after discharge in patients with stroke. Jpn J Rehabil Med .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.