Stems of susceptible and resistant cassava plants have been cytologically investigated for their defense reactions to an aggressive strain of Xanthomonas campestris pv. manihotis. Histochemistry, in conjunction with gold cytochemistry, revealed that in susceptible and resistant plants, phloem and xylem parenchyma cells displayed a wide range of responses that limited the bacterial growth within the infected plants. Lignification and suberization associated with callose deposition were effective mechanisms that reinforced host barriers in the phloem. In the infected xylem, vessels were plugged by a material of pectic and (or) lignin-like origin. Flavonoids have been seen to be incorporated in secondary cell wall coatings. These reactions occurred at a higher intensity in the resistant plants. The number of phoem and xylem cells producing autofluorescent compounds was higher in infected resistant plants than in susceptible plants. Reactions have been observed in the resistant variety only, such as secretion of phenol-like molecules by tyloses and hyperplasic activity of phloem cells that compartmentalized bacterial lysis pockets, which are potent secondary inoculum sources.Key words: lignin, suberin, callose, phenol, tylose, flavonoid, pectin.
We thank C. Breuil (University of B.C., Canada), K. Roberts (J. Innes Institute, England), and L. R. .Haaheim (University of Bergen, Norway) for kindly providing the purified ,ß-1,4-exoglucanase, the JIM 5 antipectin antibodies, and the antibacterial EPS antibodies respectively.
Twenty-two improved and local cassava genotypes were evaluated for their bacterial blight symptom types in reaction to infection by Xanthomonas axonopodis pv. manihotis under field conditions in the forest, forest savanna transition and wet savanna zones of Togo. High genotype · environment interactions in development of each symptom type were observed. Combining data on environments and genotypes, spot, blight and wilt symptoms were positively correlated. Analysing genotype reactions across environments, indications for independent mechanisms of resistance on leaf and stem level, varying by genotype, were found. Genotypes Main27 with resistance to spot and blight symptoms and TMS4(2)1425 with resistance to wilt symptoms are recommended to breeders to introgress their resistance characteristics. Significant negative correlations were generally observed between blight and wilt symptom development and root yield across ecozones, with blight being more important under lower, and wilt under higher inoculum pressure. Genotypes TMS30572, CVTM4, TMS92/0429 and TMS91/ 02316 showed low spot, blight and wilt symptoms combined with high root yield across ecozones.
The coastal strip between the Volta River delta and the westernmost portion of Benin (West Africa Margin of Atlantic Basin) is highly populated (e.g., Lomé) due to migrations from inland areas. The coastal zone has proved to be very vulnerable because of the potential development of sometimes catastrophic events related to different and interacting causes, resulting in negative effects on natural ecosystems and socio-economic conditions. The main problem is the marked erosion of large coastal sectors with maximum retreat rates of the order of 5 m/year. The continuous loss of territory leads to a progressive impoverishment of activities and human resources and to the increase of geological risk factors. The coastal erosion is induced both by natural and anthropic causes and can be controlled only by means of prevention programs, detailed scientific studies and targeted technical interventions. The main erosional processes observed in the study area are triggered by the presence of the Lomé port and other human activities on the coastal strip, including the water extraction from the subsoil, which induces subsidence and the use of sediments as inert material. These elements, together with the reduction of the solid supply from Volta River (caused by the realization of the Akosombo dam) are among the main factors that control the medium and long-term evolution of the area. Also relative sea level changes, which take into account also tectonic and/or isostatic components, can contribute to the process. In order to have a real understanding of the coastal dynamics and evolution, it would be necessary to develop a scientific structure through the collaboration of all countries of the Bight of Benin affected by coastal erosion. The aim should be primarily to collect the interdisciplinary quantitative data necessary to develop a scientific knowledge background of the Bight of Benin coastal/ocean system. In conclusion, some proposals are presented to reduce the vulnerability of the coastal area as for example to plan surveys for the realization of appropriate coastal protection works, such as walls, revetments, groins, etc. A possible expansion of the port of Lomè is also considered. Proposals comprise the constitution of a Supranational Scientific Committee as a coordinating structure on erosion for both the study of phenomena and planning interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.