The Common Component Architecture (CCA) provides a means for software developers to manage the complexity of large-scale scientific simulations and to move toward a plug-and-play environment for high-performance computing. In the scientific computing context, component models also promote collaboration using independently developed software, thereby allowing particular individuals or groups to focus on the aspects of greatest interest to them. The CCA supports parallel and distributed computing as well as local high-performance connections between components in a language-independent manner. The design places minimal requirements on components and thus facilitates the integration of existing code into the CCA environment. The CCA model imposes minimal overhead to minimize the impact on application performance. The focus on high performance distinguishes the CCA from most other component models. The CCA is being applied within an increasing range of disciplines, including combustion research, global climate simulation, and computational chemistry.
Deep learning models can infer complex patterns present in natural language text. Relative to n-gram models, deep learning models can capture more complex statistical patterns based on smaller training corpora. In this paper we explore the use of a particular deep learning model, document vectors (DVs), for feature location. DVs seem well suited to use with source code, because they both capture the influence of context on each term in a corpus and map terms into a continuous semantic space that encodes semantic relationships such as synonymy. We present preliminary results that show that a feature location technique (FLT) based on DVs can outperform an analogous FLT based on latent Dirichlet allocation (LDA) and then suggest several directions for future work on the use of deep learning models to improve developer effectiveness in feature location.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.