The role played by YouTube's recommendation algorithm in unwittingly promoting misinformation and conspiracy theories is not entirely understood. Yet, this can have dire real-world consequences, especially when pseudoscientific content is promoted to users at critical times, such as the COVID-19 pandemic. In this paper, we set out to characterize and detect pseudoscientific misinformation on YouTube. We collect 6.6K videos related to COVID-19, the Flat Earth theory, as well as the anti-vaccination and anti-mask movements. Using crowdsourcing, we annotate them as pseudoscience, legitimate science, or irrelevant and train a deep learning classifier to detect pseudoscientific videos with an accuracy of 0.79. We quantify user exposure to this content on various parts of the platform and how this exposure changes based on the user's watch history. We find that YouTube suggests more pseudoscientific content regarding traditional pseudoscientific topics (e.g., flat earth, anti-vaccination) than for emerging ones (like COVID-19). At the same time, these recommendations are more common on the search results page than on a user's homepage or in the recommendation section when actively watching videos. Finally, we shed light on how a user's watch history substantially affects the type of recommended videos.
A large number of the most-subscribed YouTube channels target children of very young age. Hundreds of toddler-oriented channels on YouTube feature inoffensive, well produced, and educational videos. Unfortunately, inappropriate content that targets this demographic is also common. YouTube's algorithmic recommendation system regrettably suggests inappropriate content because some of it mimics or is derived from otherwise appropriate content. Considering the risk for early childhood development, and an increasing trend in toddler's consumption of YouTube media, this is a worrisome problem. In this work, we build a classifier able to discern inappropriate content that targets toddlers on YouTube with 84.3% accuracy, and leverage it to perform a large-scale, quantitative characterization that reveals some of the risks of YouTube media consumption by young children. Our analysis reveals that YouTube is still plagued by such disturbing videos and its currently deployed counter-measures are ineffective in terms of detecting them in a timely manner. Alarmingly, using our classifier we show that young children are not only able, but likely to encounter disturbing videos when they randomly browse the platform starting from benign videos.
The use of deceptive techniques in user-generated video portals is ubiquitous. Unscrupulous uploaders deliberately mislabel video descriptors aiming at increasing their views and subsequently their ad revenue. This problem, usually referred to as "clickbait," may severely undermine user experience. In this work, we study the clickbait problem on YouTube by collecting metadata for 206k videos. To address it, we devise a deep learning model based on variational autoencoders that supports the diverse modalities of data that videos include. The proposed model relies on a limited amount of manually labeled data to classify a large corpus of unlabeled data. Our evaluation indicates that the proposed model offers improved performance when compared to other conventional models. Our analysis of the collected data indicates that YouTube recommendation engine does not take into account clickbait. Thus, it is susceptible to recommending misleading videos to users.
YouTube is by far the largest host of user-generated video content worldwide. Alas, the platform also hosts inappropriate, toxic, and hateful content. One community that has often been linked to sharing and publishing hateful and misogynistic content is the so-called Involuntary Celibates (Incels), a loosely defined movement ostensibly focusing on men's issues. In this paper, we set out to analyze the Incel community on YouTube by focusing on this community's evolution over the last decade and understanding whether YouTube's recommendation algorithm steers users towards Incel-related videos. We collect videos shared on Incel communities within Reddit and perform a data-driven characterization of the content posted on YouTube. Among other things, we find that the Incel community on YouTube is getting traction and that during the last decade, the number of Incel-related videos and comments rose substantially. We also find that users have a 6.3% of being suggested an Incel-related video by YouTube's recommendation algorithm within five hops when starting from a non-Incelrelated video. Overall, our findings paint an alarming picture of online radicalization: not only Incel activity is increasing over time, but platforms may also play an active role in steering users towards such extreme content.
YouTube has revolutionized the way people discover and consume videos, becoming one of the primary news sources for Internet users. Since content on YouTube is generated by its users, the platform is particularly vulnerable to misinformative and conspiratorial videos. Even worse, the role played by YouTube's recommendation algorithm in unwittingly promoting questionable content is not well understood, and could potentially make the problem even worse. This can have dire realworld consequences, especially when pseudoscientific content is promoted to users at critical times, e.g., during the COVID-19 pandemic.In this paper, we set out to characterize and detect pseudoscientific misinformation on YouTube. We collect 6.6K videos related to COVID-19, the flat earth theory, the anti-vaccination, and anti-mask movements; using crowdsourcing, we annotate them as pseudoscience, legitimate science, or irrelevant. We then train a deep learning classifier to detect pseudoscientific videos with an accuracy of 76.1%. Next, we quantify user exposure to this content on various parts of the platform (i.e., a user's homepage, recommended videos while watching a specific video, or search results) and how this exposure changes based on the user's watch history. We find that YouTube's recommendation algorithm is more aggressive in suggesting pseudoscientific content when users are searching for specific topics, while these recommendations are less common on a user's homepage or when actively watching pseudoscientific videos. Finally, we shed light on how a user's watch history substantially affects the type of recommended videos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.