The paper represents the results of monitoring and evaluation of the efficiency of hydroimpulsive disintegration of outburst-prone coal seams in the stopes of development mine workings using a system of sound detecting facilities. Methods of acoustic emission control have been considered as well as the monitoring tasks to evaluate rock mass conditions before the procedure and after it inclusive of the results of sound accompaniment of hydraulic disintegration of the coal seam. It has been determined that the higher concentration of stresses within the rock mass is, the more efficient action of high frequency self-oscillations of cavitation transmitter is on both the fissuring and changes in gas-dynamic state of the coal seam. It has been recommended to apply a mode of impulsive fluid pumping under the conditions where coal seam is in the stress-strain state.
The article is devoted to the analysis of the results of the mine instrumental measurements of the local degassing system of the m3 seam on the horizon of 1100 m of the mine named. V.M. Bazhanov to establish the basic rational parameters with the subsequent application of the biotechnological method of reducing the concentration of methane. As a result of mine instrumental measurements (vacuum-gas surveys at the borehole heads), the parameters of the degassing process (methane flow rate at the borehole heads and the average vacuum on them), technological parameters (angle of turn and tilt of wells, their length), well flow rate efficiency from the distance to the bottom of the longwall and the displacement of the undermined rocks. Establishing the basic parameters of degassing will allow you to quickly manage the flow rate of wells and underpressure at their mouths, taking into account the specific mining and geological and mining conditions. The use of biofilters allows controlling the concentration of methane in the atmosphere of mine roadway by methanotrophic bacteria.
In this article, circumstances and factors which can lead to a degraded labour protection and occurrence of emergency in a district are reviewed and analyzed on the example of an accident occurred at sudden coal-and-gas outburst in the panel face № 42-1146 m of the Tovstyi-Zakhid seam m3 in the Central Mine of the Toretsvukhillia Mining Company. In this article, state of equipment and its location in the district in accordance with the requirements of the safety rules, records of devices which monitor gas-dynamic state of the coal seam and operation of the shield aggregate are considered. Mining and geological conditions of the seam bedding and technological conditions of the district location within the working horizon; methane content in the air of the roadways in the district; change of coal physical and mechanical properties in the area of possible geological disturbance; results of control of the coal seam gas-dynamic state analyzed by acoustic emission parameters; and other risk factors that led to emergencies were studied. The decisions made for controlling possible area with geological disturbance impact which was detected in the horizons of 916 m and 1026 m on the basis of mining-graphic materials and data of geological study in the mining roadways adjacent to the panel No. 14 in the district 42-1146 m were analyzed. The order and sequence of the works established for eliminating consequences of the coal and gas sudden outburst and detecting zone with disturbed coal and outburst cavity were considered. On the basis of the results obtained, conclusions were made and actions were elaborated on preventing accidents at mining steep prone-to-outburst coal seams by the shield aggregates. It is recommended to continue the scientific research for the purpose of detecting zone with possible impact of discontinuous geological disturbance and plicate disturbed zones in the coal seams by the changed hardness of coal in the adjacent panel, and developing certain local measures on preventing gas-dynamic phenomena at mining steep prone-to-outburst seams by the shield aggregates. The objective of this work was to analyze state of the working area and labor protection and to study the conditions and factors which had led to the accident with serious consequences and emergency condition of the panel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.