Flow visualization was performed on a single short elbow piping by means of two-dimensional particle image velocimetry. The piping was designed as a 1/7-scale model of a section of the cold-leg piping of a Japan sodium-cooled fast reactor. This study characterized the periodic motions and flow structures that appeared in and downstream of the elbow and potentially affected flow-induced vibrations. The flow field that related flow separation and frequency characteristics of the flow velocity fluctuation were explored for Reynolds number from 0.3 × 106 to 1.0 × 106, which belonged to the post-critical regime. Experimental results show that flow structures are not strongly dependent on Reynolds number in this range. Frequency analysis for the velocity fluctuation in terms of Strouhal number (St) reveals that there exist not only two kinds of vortices with different shedding periods, but also one periodic flow in the circumferential direction. In the flow separation region, vortices are periodically emitted with St ≈ 0.5, while those with about 1.0 are shed in a shear flow region located between the separation region and the pipe center. Moreover, a periodic motion with St ≈ 0.5 appeared in the circumferential direction in the vicinity near the separation region. These values of St were not strongly dependent on Reynolds number in this study.
A multi-elbow piping system is adopted for the Japan sodium-cooled fast reactor (JSFR) cold-legs. Flow-induced vibration (FIV) is considered to appear due to complex turbulent flow with very high Reynolds number in the piping. In this study, pressure measurement for a single elbow flow is conducted to elucidate pressure fluctuation characteristics originated from turbulent motion in the elbow, which lead potentially to the FIV. Two different scale models, 1/7- and 1/14-scale simulating the JSFR cold-leg piping, are tested experimentally to confirm whether a scale effect in pressure fluctuation characteristics exists. A distinguishing peak can be seen in each power spectrum density (PSD) profile of pressure fluctuation obtained in and downstream of the flow separation region for both scaled models. When nondimensionalized, the PSD profiles show good correspondence regardless of scale model and even of Reynolds number simulated in this study.
An electromagnetic pump (EMP) has superior potential to improve the economic performance and ease of maintenance of sodium-cooled fast reactors. This study investigates the adequateness of a modular-type EMP system for large-sized (1,500 MWe class) sodium-cooled fast reactors. A flow rate of over 500 m 3 /min is required for the main circulating pump of such reactors. There is concern that such a large EMP will cause flow instability. A modular-type EMP system can solve this issue since smaller EMPs are arranged in parallel and the flow rate of each EMP is reduced. Parallel-module EMP systems have been investigated as the primary and secondary circulating pumps. The results of the design study and electromagnetic analysis of the primary main pump confirmed that flow instability does not occur under all operational conditions. From a safety viewpoint, a reliable flow-coast-down system has been proposed, comprising an electric supply system with a permanent magnet synchronous motor and a reliable circuit breaker system. The modular-type EMP system is also effective for the secondary system, drastically simplifying the piping arrangement. The results of this study show that the modular-type EMP system is highly compatible with the main circulating pumps of large-sized sodium-cooled fast reactors, as well as the advantages gained from adopting this system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.