Few studies have reported on the effectiveness of awake prone therapy in the clinical course of coronavirus disease (COVID-19) patients. This study aimed to investigate the effects of awake prone therapy during spontaneous breathing on the improvement of oxygenation over 3 weeks for COVID-19 acute respiratory failure. Data of consecutive COVID-19 patients with lung disorder with a fraction of inspired oxygen (FIO2) ≥ 0.4 and without tracheal intubation were analyzed. We examined changes in SpO2/FIO2, ROX index ((SpO2/FIO2)/respiratory rate) and the seven-category ordinal scale after the initiation of FIO2 ≥ 0.4 and compared these changes between patients who did and did not receive prone therapy. Of 58 patients, 27 received awake prone therapy, while 31 did not. Trend relationships between time course and change in SpO2/FIO2 and ROX index were observed in both groups, although a significant interaction in the relationship was noted between prone therapy and change in SpO2/FIO2 and ROX index. The seven-category ordinal scale also revealed a trend relationship with time course in the prone therapy group. The awake prone therapy was significantly associated with a lower rate of tracheal intubation. In patients with COVID-19 pneumonia treated with FIO2 ≥ 0.4, awake prone therapy may improve oxygenation within two weeks.
To demonstrate the possibility of stress measurement at depths of more than 3 km, in-situ stress states were determined around the source faults of three seismic events: a Mw2.2 seismic event at about 3.3 km below surface in Mponeng gold mine, a Mw3.5 seismic event at about 3.5 km below surface in the Savuka gold mine, and the Orkney earthquake (Mw5.5), with its hypocentre about 5 km below surface, beneath the Moab Khotsong gold mine. The Mw2.2 seismic event occurred in a 30 m thick gabbroic dyke that intruded into a host rock of quartzite. A 90 m long borehole was drilled to penetrate its source fault. Borehole breakout and core discing were observed in the host rock and the hanging wall of the source fault, i.e., in the dyke. Diametrical core deformation analysis (DCDA) and deformation rate analysis (DRA) were applied to core samples retrieved from the borehole. The DCDA determines the differential stress in the plane normal to a borehole by measuring the cross-section shape of a core sample, while the DRA reproduces the normal stress in the orientation in which a cyclic loading is applied, i.e., to obtain hysteresis of the stress-strain curves. By integrating these measurements and criteria of the borehole breakout and the core discing, the principal stress states in the host rock, the footwall in the dyke and the hanging wall in the dyke were reproduced. Significant differences were found between the stress states in the footwall and the hanging wall. The Mw3.5 seismic event occurred in a 36 m thick dyke called BV78. A tunnel that was damaged by the seismic event passed through the source region. The compact conicalended borehole overcoring (CCBO) technique was applied at two sites along the tunnel; one site was in an area de-stressed by mining and the other about 10 m from the dyke in an area of increased stress owing to the mining abutment above. DCDA was also applied to the core samples. Three boreholes (Hole A, Hole B and Hole C) that reach an aftershock area in the upper margin of the source fault of the Orkney earthquake (Mw5.5), were drilled by the ICDP-DSeis project (Ogasawara et al, 2019). Since the holes were designed to be drilled in the direction of the maximum compression, borehole breakout or core discing rarely occurred. The DCDA was applied to core samples recovered from Hole A and Hole B. The DRA was also applied to core samples of Hole A. The differential and the normal stresses along Hole A showed a spatial variation that correlates with a variation in lithology and the aftershock distribution.
<p>The 2014 Orkney earthquake (M5.5) occurred below the Moab Khotsong gold mine in South Africa. The shallowest aftershocks were located only several hundred meters below the deepest level of the mine. Two boreholes (Holes A (817 m) and B (700 m)) were drilled toward the upper margin of the aftershock zone from a specially excavated chamber at 2.9 km depth by the ICDP-DSeis project. Hole A deflected from the aftershock zone, while Hole B intersected it. Hole C was branched from Hole B to recover more samples from the aftershock zone. Except for the intersection in Hole B, the drill core recovery was ~100%. In-hole geophysical logging, including the surveys of the borehole wall geometry were carried out along the entire length of Hole A, while they could be done only as far as the intersection with the aftershock zone in Hole B due to hole closure. Hole C was not logged.</p><p>The focal mechanism solutions of mining induced earthquakes shallower than 3 km are usually of the normal faulting type, while those of the Orkney earthquake and its aftershocks deeper than 3.5 km have a strike-slip signature. In this study, we applied the Deformation Rate Analysis (DRA) and the Diametrical Core Deformation Analysis (DCDA) techniques to rock cores recovered from Holes A, B and C to explore the depth variation in the stress state that would cause the depth variation in the faulting regime. In the DRA, a cyclic loading is applied to a sub-sample cut from a drill core to determine the normal stress in the loading direction from hystereses of the stress-strain curve. We determined the normal stresses in 9 directions at each depth to recover the principal stress state redundantly. However, because it takes much time for sub-sample preparations and loading, we applied this technique only at 3 depths in Hole A. With the DCDA, the differential stress in the plane normal to a borehole is evaluated from the ellipsoidal cross-sectional shape of the rock cores. Though only the differential stress can be measured by the DCDA, it takes only several minutes for measurement at each depth. We evaluated the differential stress as densely as every several meters along Holes A, B and C.</p><p>Rock cores of Hole A were oriented by comparing joints and veins identified on the borehole wall optical-televiewer images and in the cores. Thus, the stress orientations in the plane normal to Hole A can be determined as the orientation of the maximum and the minimum core diameter. The stress orientation is obtained also from the breakout of borehole wall identified by the acoustic televiewer. Further, by combining the differential stress magnitude evaluated by the DCDA and the width of the breakout, magnitudes of the maximum and the minimum compression are estimated. We introduce the depth variations in the stress state along Holes A, B and C, as well as those of in-hole logging data to discuss spatial heterogeneity of stresses in the source region of the Orkney earthquake.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.