This article aims to investigate the frequency-magnitude characteristics and lower magnitude limits of the microseismic catalog recorded with a seismic network sensitive to high frequencies at Mponeng mine, South Africa. The network, composed of one three-component accelerometer and eight acoustic emission sensors, is located at a depth of 3.5 km below the surface and covers the limited volume of approximately 300 × 300 × 300 m. The three-component accelerometer was used to estimate the moment magnitude for the limited number of 135 events (M w ranged from 4:1 to 0:3) well recorded by the network. We use the relation between the moment magnitude estimated from accelerometer data and radiated energy/moment magnitude estimated from acoustic emission sensors to extend the catalog to lower magnitudes. The magnitude of completeness of selected spatiotemporal subsets of the catalog was estimated for: (1) an aftershock sequence of an M w 1.9 event that occurred approximately 30 m from the network, and (2) postblasting activity during working days, located more than 80 m from the network. The data follow the Gutenberg-Richter (GR) frequency-magnitude relationship with no visible deviation from selfsimilar behavior of seismicity between M w 4:4 and 1:9 for the aftershock sequence and between 3:5 and 1:5 for the postblasting dataset. We estimated the magnitude of completeness of selected subset as low as 4:3 (b 1:26) for the aftershock sequence and 3:4 (b 1:17) for the postblasting activity. Differences in magnitude of completeness are attributed to location of recorded activity and site effects.
A destructive large earthquake (the 2004 mid Niigata prefecture earthquake) sequence occurred in the central part (Chuetsu district) of Niigata prefecture, central Japan on October 23, 2004. We have deployed a temporary seismic network composed of 54 stations for aftershock observation just above and around the focal area of the earthquake for about a month. Using travel time data from the temporary seismic network and surrounding routine stations, we obtained precise aftershock distribution and 3D seismic velocity structure in and around the fault planes of the earthquake and four major (M ≥ 6) aftershocks by double-difference tomography. The results clearly show three major aftershock alignments. Two of them are almost parallel and dipping toward the WNW. The shallow and deep aftershock alignments correspond to the fault plane of the mainshock and that of the largest aftershock (M6.4), respectively. The third alignment is almost perpendicular to the WNW-ward dipping planes and perhaps corresponds to the fault plane of the M6 aftershock on October 27. General feature of the obtained velocity structure is that the hanging wall (western part of the focal area) has lower velocity and the footwall (eastern part of the focal area) has higher velocity. Major velocity boundary seems to shift westward in comparison to in northern and southern parts at a location near the central part of the focal area, where the main shock rupture started. Some parts of the fault planes were imaged as low velocity zones. This complex crustal structure would be one of possible causes of the multi-fault rupture of the 2004 mid Niigata prefecture earthquake sequence.
We have evaluated an anomalous crustal strain in the Tohoku region, northeastern Japan associated with a step-like stress change induced by the 2011 off the Pacific coast of Tohoku Earthquake (M w 9.0). Because the source area of the event was extremely large, the gradient of the observed eastward coseismic displacements that accompanied uniform stress change had a relatively uniform EW extension in northeastern Japan. Accordingly, the deformation anomaly, which is determined by subtracting the predicted displacement in a half-space elastic media from the observed displacement, should reflect the inhomogeneity of the rheology, or stiffness, of the crust. The difference of the EW extension anomaly between the forearc and backarc regions possibly indicates a dissimilarity of stiffness, depending on the crustal structure of the Tohoku region. The Ou-backbone range-a strain concentration zone in the interseismic period-shows an extension deficit compared with predictions. A low viscosity in the lower crust probably induced a relatively small extension. Meanwhile, the northern part of the Niigata-Kobe tectonic zone, another strain concentration zone, indicates an excess of extensional field. This is probably caused by a low elastic moduli of the thick sedimentation layer. The detection of strain anomalies in the coseismic period enables a new interpretation of the deformation process at strain concentration zones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.