Our aquareovirus structure displays marked similarity to the mammalian reovirus intermediate subviral particles, suggesting a close evolutionary relationship. However, the noticeable distinction is that aquareovirus lacks the hemagglutinin spike observed in reovirus. The T=1 inner layer organization observed in the aquareovirus appears to be common to other members of the Reoviridae. Such organization may be of fundamental significance in the endogenous transcription of the genome in these viruses.
Strong evidence indicates that virions of mammalian reoviruses undergo proteolytic processing by acid-dependent cellular proteinases as an essential step in productive infection. Proteolytic processing takes the form of a series of cleavages of outer-capsid proteins final sigma3 and mu1/mu1C. Previous studies showed an effect of both NH4Cl and E-64 on these cleavages, indicating that one or more of the acid-dependent cysteine proteinases in mammalian cells (cathepsins B and L, for example) is required; however, these studies did not address whether acid-dependent aspartic proteinases in those cells (cathepsin D, for example) may also be required. To determine the role of aspartic proteinases in reovirus entry, studies with pepstatin A, a specific inhibitor of aspartic proteinases, were performed. The results showed that pepstatin A neither blocks nor slows reovirus infection of L or MDCK cells. Experiments using ribonuclease A and other proteins as cleavable substrates showed that cathepsin-D-like proteinases from these cells are inhibited within the tested range of pepstatin A concentrations both in vitro and within living cells. In other experiments, virion-bound final sigma3 protein was shown to be a poor substrate for cleavage by cathepsin D in vitro, consistent with the findings with inhibitors. In sum, the data indicate that cathepsin-D-like aspartic proteinases provide little or no activity toward proteolytic events required for infection of L or MDCK cells with reovirus virions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.