Cystatin M/E is a high affinity inhibitor of the asparaginyl endopeptidase legumain, and we have previously reported that both proteins are likely to be involved in the regulation of stratum corneum formation in skin. Although cystatin M/E contains a predicted binding site for papain-like cysteine proteases, no high affinity binding for any member of this family has been demonstrated so far. We report that human cathepsin V (CTSV) and human cathepsin L (CTSL) are strongly inhibited by human cystatin M/E. Kinetic studies show that K i values of cystatin M/E for the interaction with CTSV and CTSL are 0.47 and 1.78 nM, respectively. On the basis of the analogous sites in cystatin C, we used site-directed mutagenesis to identify the binding sites of these proteases in cystatin M/E. We found that the W135A mutant was rendered inactive against CTSV and CTSL but retained legumain-inhibiting activity. Conversely, the N64A mutant lost legumain-inhibiting activity but remained active against the papain-like cysteine proteases. We conclude that legumain and papain-like cysteine proteases are inhibited by two distinct non-overlapping sites. Using immunohistochemistry on normal human skin, we found that cystatin M/E co-localizes with CTSV and CTSL. In addition, we show that CTSL is the elusive enzyme that processes and activates epidermal transglutaminase 3. The identification of CTSV and CTSL as novel targets for cystatin M/E, their (co)-expression in the stratum granulosum of human skin, and the activity of CTSL toward transglutaminase 3 strongly imply an important role for these enzymes in the differentiation process of human epidermis.The cellular activity of a protease is the result of many regulatory mechanisms such as the concentration and compartmentalization of substrates, the enzyme itself, and its cognate inhibitors. Cystatins are the natural and specific inhibitors of endogenous mammalian lysosomal cysteine proteases and have shown important regulatory and protective functions in cells and tissues against proteolysis by cysteine proteases of host, bacterial, and viral origin (1-3). The inhibitory activity of cystatins is regulated by a reversible, tight-binding interaction between the protease inhibitor and its target protease (4). Disturbance of the normal balance between cysteine proteases and their inhibitors at a wrong time and location can lead to several pathological conditions such as chronic inflammatory reactions (5), tumor malignancy (6), and faulty differentiation processes in the epidermis and hair follicle (7). Little is known on the specific biological functions of cystatin family members. However, mutations in the genes encoding the cystatin family members cystatin B and C cause neurological phenotypes in humans (8, 9).Cystatin M/E is a 14-kDa secreted protein that shares only 35% homology with other human type 2 cystatins. Nevertheless, it has a similar overall structure including the two characteristic intrachain disulfide bridges (10, 11). Expression of cystatin M/E is found to be restricted to ...
Minimal residual disease (MRD) in patients with Philadelphia chromosome- positive acute lymphoblastic leukemia (Ph1 ALL) who received allogeneic (n = 9) or autologous (n = 6) bone marrow transplantation (BMT) was evaluated by the polymerase chain reaction (PCR) for the bcr-abl transcript. Twelve patients received BMT at the time of hematologic and cytogenetic remission. However, MRD was detected in 8 of 10 patients evaluated. Seven patients, including three who had MRD before BMT, continue to have a disease-free survival 5 to 64 months after BMT. Twenty-one specimens obtained from these patients at various times after BMT did not show MRD. In three patients, MRD detected just before BMT seems to be eradicated by BMT protocol. The other eight patients developed cytogenetic or hematologic relapses 2 to 8 months after BMT. Seven of 14 samples from these patients demonstrated MRD, which preceded clinical relapse by 3 to 9 weeks. Thus, this technique for the detection of MRD appears to be useful for the more precise assessment of various antileukemia therapies and for early detection of leukemia recurrence.
During the course of structural gene analyses for protein C deficiency, we have confirmed that a T or G nucleotide variation is present at exon 6 of the protein C gene. This single-base substitution was located at the third nucleotide coding for Ser (TCT) at 99 residue, and neither produces an amino acid substitution nor creates a new restriction enzyme site. By using mutagenic primers that could introduce A instead of G at the third nucleotide 3′ to the de novo polymorphic site, we have created the polymorphic Xba I site (T/CTAGA) in a more-frequent allele. Polymerase chain reaction using these mutagenic primers and subsequent Xba I digestion of 20 normal Japanese genomic samples showed that the frequency of this new sequence polymorphism designated as PC- 493 was 0.18 and that the estimated heterozygosity rate was 28.9%. In Caucasians, the frequency of this polymorphism was 0.25, and a significant difference did not exist between Japanese and Caucasian populations. The examination of the haplotype inter-relationships with PC-493 and the Msp I polymorphism 5′ to the protein C gene established that PC-493 gave a 16.7% chance of new information per individual for people who were previously homozygous for the Msp I polymorphism. We have performed a family study of the protein C-deficient pedigree using this sequence polymorphism, and found that the PC-493 DNA polymorphism was a useful marker for tracing the affected gene in protein C- deficient family members.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.