Surface modification of a p-SiOC film induced by Helium (He) plasma was investigated using various measurements. Differential Fourier transform infrared absorption (FT-IR) spectra and the etch-depth measurements with the immersion in the mixed hydrofluoric acid (HF) indicate that the almost all of Si-CH3 bonds are broken in the modification layer, resulting in carbon-depletion, an SiO2-like composition. The x-ray photoelectron spectroscopy (XPS) measurements at different take-off angles reveal that the modified surface forms a double-layered structure, a thin carbon-rich top layer (about 1 nm thick) on a thick carbon-depletion layer (about 20 nm thick) with the irradiation of He plasma over 300 W. Atomic force microscopy (AFM) observations show that the modified surface is the smoothest in the case of the carbon-depletion surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.