Physical exercise has beneficial effects on neurocognitive function, including hippocampus-dependent episodic memory. Exercise intensity level can be assessed according to whether it induces a stress response; the most effective exercise for improving hippocampal function remains unclear. Our prior work using a special treadmill running model in animals has shown that stress-free mild exercise increases hippocampal neuronal activity and promotes adult neurogenesis in the dentate gyrus (DG) of the hippocampus, improving spatial memory performance. However, the rapid modification, from mild exercise, on hippocampal memory function and the exact mechanisms for these changes, in particular the impact on pattern separation acting in the DG and CA3 regions, are yet to be elucidated. To this end, we adopted an acute-exercise design in humans, coupled with high-resolution functional MRI techniques, capable of resolving hippocampal subfields. A single 10-min bout of very light-intensity exercise (30%V˙O2peak) results in rapid enhancement in pattern separation and an increase in functional connectivity between hippocampal DG/CA3 and cortical regions (i.e., parahippocampal, angular, and fusiform gyri). Importantly, the magnitude of the enhanced functional connectivity predicted the extent of memory improvement at an individual subject level. These results suggest that brief, very light exercise rapidly enhances hippocampal memory function, possibly by increasing DG/CA3−neocortical functional connectivity.
Our study revealed that V˙O2max improvement with the HIAT was greater than with the CAT despite the HIAT being performed with a far lower volume and in far less time than the CAT. This suggests that the HIAT has potential as a time-efficient training mode to improve V˙O2max in sedentary adults.
Assessment of the FA value of the caudate nucleus may be an important, less invasive method for distinguishing true hydrocephalus from ventriculomegaly. Further research in a large number of patients is needed to verify the diagnostic ability of this method.
Multisite magnetic resonance imaging (MRI) is increasingly used in clinical research and development. Measurement biases—caused by site differences in scanner/image‐acquisition protocols—negatively influence the reliability and reproducibility of image‐analysis methods. Harmonization can reduce bias and improve the reproducibility of multisite datasets. Herein, a traveling‐subject (TS) dataset including 56 T1‐weighted MRI scans of 20 healthy participants in three different MRI procedures—20, 19, and 17 subjects in Procedures 1, 2, and 3, respectively—was considered to compare the reproducibility of TS‐GLM, ComBat, and TS‐ComBat harmonization methods. The minimum participant count required for harmonization was determined, and the Cohen's d between different MRI procedures was evaluated as a measurement‐bias indicator. The measurement‐bias reduction realized with different methods was evaluated by comparing test–retest scans for 20 healthy participants. Moreover, the minimum subject count for harmonization was determined by comparing test–retest datasets. The results revealed that TS‐GLM and TS‐ComBat reduced measurement bias by up to 85 and 81.3%, respectively. Meanwhile, ComBat showed a reduction of only 59.0%. At least 6 TSs were required to harmonize data obtained from different MRI scanners, complying with the imaging protocol predetermined for multisite investigations and operated with similar scan parameters. The results indicate that TS‐based harmonization outperforms ComBat for measurement‐bias reduction and is optimal for MRI data in well‐prepared multisite investigations. One drawback is the small sample size used, potentially limiting the applicability of ComBat. Investigation on the number of subjects needed for a large‐scale study is an interesting future problem.
This study suggests that HAIT has potential as a time-efficient training mode to improve cardiorespiratory capacity and autonomic nervous system function in sedentary adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.