Aesthetic image captioning (AIC) refers to the multimodal task of generating critical textual feedbacks for photographs. While in natural image captioning (NIC), deep models are trained in an end-to-end manner using large curated datasets such as MS-COCO, no such large-scale, clean dataset exists for AIC. Towards this goal, we propose an automatic cleaning strategy to create a benchmarking AIC dataset, by exploiting the images and noisy comments easily available from photography websites. We propose a probabilistic caption-filtering method for cleaning the noisy web-data, and compile a large-scale, clean dataset 'AVA-Captions', ( ∼ 230, 000 images with ∼ 5 captions per image). Additionally, by exploiting the latent associations between aesthetic attributes, we propose a strategy for training a convolutional neural network (CNN) based visual feature extractor, typically the first component of an AIC framework. The strategy is weakly supervised and can be effectively used to learn rich aesthetic representations, without requiring expensive ground-truth annotations. We finally showcase a thorough analysis of the proposed contributions using automatic metrics and subjective evaluations.
The success of training deep Convolutional Neural Networks (CNNs) heavily depends on a significant amount of labelled data. Recent research has found that neural style transfer algorithms can apply the artistic style of one image to another image without changing the latter's high-level semantic content, which makes it feasible to employ neural style transfer as a data augmentation method to add more variation to the training dataset. The contribution of this paper is a thorough evaluation of the effectiveness of the neural style transfer as a data augmentation method for image classification tasks. We explore the state-of-the-art neural style transfer algorithms and apply them as a data augmentation method on Caltech 101 and Caltech 256 dataset, where we found around 2% improvement from 83% to 85% of the image classification accuracy with VGG16, compared with traditional data augmentation strategies. We also combine this new method with conventional data augmentation approaches to further improve the performance of image classification. This work shows the potential of neural style transfer in computer vision field, such as helping us to reduce the difficulty of collecting sufficient labelled data and improve the performance of generic image-based deep learning algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.