Heavy metals in drinking water have become a severe threat to human health. Detection of heavy metals has been achieved by electrochemical sensors that are modified with complex nanocomposites; however, reproducibility of these sensors is still a big challenge when applied in commercial settings. Here, a simple, very robust, and sensitive electrochemical sensor based on a screen‐printed carbon electrode modified with butterfly‐shaped silver nanostructure (AgNS/SPCE) has been developed for the concurrent determination of cadmium (II), lead (II), copper (II), and mercury (II) in water samples. The electrochemical behavior of the modified electrodes was investigated using cyclic voltammetry and differential pulse anodic stripping voltammetry. The AgNS/SPCE showed distinct peak potentials and a significant increase in the peak currents for all heavy metals, attributed to the high electrical conductivity and electrocatalytic activity of the synthesized butterfly‐shaped AgNS. Moreover, the excellent stability and sensitivity towards simultaneous quantification of heavy metals have been obtained with detection limits of 0.4 ppb, 2.5 ppb, 7.3 ppb, and 0.7 ppb for Cd (II), Pb (II), Cu (II), and Hg (II), respectively. Besides, the constructed sensor was successfully applied to simultaneously quantify target heavy metals in spiked water samples. Owing to excellent sensitivity, high robustness, affordability, and fast response, the presented electrochemical sensor could be incorporated into a portable and miniaturized potentiostat device, making it a promising method for on‐site water analysis.
We report on the development of a simple and cost-effective potentiometric sensor array that is based on manual “drawing” on the polymeric support with the pencils composed of graphite and different types of zeolites. The sensor array demonstrates distinct sensitivity towards a variety of inorganic ions in aqueous media. This multisensor system has been successfully applied to quantitative analysis of 100 real-life surface waters sampled in Mahananda and Hooghly rivers in the West Bengal state (India). Partial least squares regression has been utilized to relate responses of the sensors to the values of different water quality parameters. It has been found that the developed sensor array, or electronic tongue, is capable of quantifying total hardness, total alkalinity, and calcium content in the samples, with the mean relative errors below 18%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.