Space radiation may cause DNA damage to cells and concern for the inheritance of mutations in offspring after deep space exploration. However, there is no way to study the long-term effects of space radiation using biological materials. Here, we developed a method to evaluate the biological effect of space radiation and examined the reproductive potential of mouse freeze-dried spermatozoa stored on the International Space Station (ISS) for the longest period in biological research. The space radiation did not affect sperm DNA or fertility after preservation on ISS, and many genetically normal offspring were obtained without reducing the success rate compared to the ground-preserved control. The results of ground x-ray experiments showed that sperm can be stored for more than 200 years in space. These results suggest that the effect of deep space radiation on mammalian reproduction can be evaluated using spermatozoa, even without being monitored by astronauts in Gateway.
The reason for the poor development of cloned embryos is not yet clear. Several reports have suggested that some nuclear remodeling/reprogramming factors (RRFs) are removed from oocytes at the time of enucleation, which might cause low success rate of animal cloning. However, there is currently no method to manipulate the volume of RRFs in oocytes. Here, we developed techniques to gradually reduce RRFs in oocytes by injecting somatic cell nuclei into oocytes. These injected nuclei were remodeled and reprogramed using RRFs, and then RRFs were removed by subsequent removal of somatic nuclei from oocytes. The size of metaphase II spindle reduced immediately, but did recover when transferred into fresh oocytes. Though affected, the full-term developmental potential of these RRF-reduced oocytes with MII-spindle shrinkage was not lost after fertilization. When somatic cell nuclear transfer was performed, the successful generation of cloned mice was somewhat improved and abnormalities were reduced when slightly RRFs-reduced oocytes were used. These results suggest that the amount of RRFs in oocyte is important but not the main reason for the incomplete reprogramming of somatic cell nuclei.
The underlying mechanism for parental asymmetric chromatin dynamics is still unclear. To reveal this, we investigate chromatin dynamics in parthenogenetic, androgenic, and several types of male germ cells-fertilized zygotes. Here we illustrate that parental conflicting role mediates the regulation of chromatin dynamics. Sperm reduces chromatin dynamics in both parental pronuclei (PNs). During spermiogenesis, male germ cells acquire this reducing ability and its resistance. On the other hand, oocytes can increase chromatin dynamics. Notably, the oocytes-derived chromatin dynamics enhancing ability is dominant for the sperm-derived opposing one. This maternal enhancing ability is competed between parental pronuclei. Delayed fertilization timing is critical for this competition and compromises parental asymmetric chromatin dynamics and zygotic transcription. Together, parental competition for the maternal factor enhancing chromatin dynamics is a determinant to establish parental asymmetry, and paternal repressive effects have supporting roles to enhance asymmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.