We demonstrated highly reliable Cu interconnects using a high-quality silicon nitride film grown at temperatures below 300 C. The low-temperature silicon nitride (LT-SiN) film, which was used as a Cu-diffusion barrier layer and a final passivation layer, was deposited at 275 C by plasma-enhanced chemical vapor deposition at a low SiH 4 flow ratio. The low SiH 4 flow ratio was due to the use of a highly dilute nitrogen flow, leading to the generation of many nitrogen radicals or ions in the plasma. These radicals or ions might reduce the hydrogen concentration and defect density of the film. As a result, a stoichiometric silicon nitride (Si 3 N 4 ) film with a low hydrogen concentration was successfully obtained. By applying this LT-SiN film in 130-nm-node Cu interconnects for magnetoresistive random access memory, highly reliable via-hole electromigration (Via-EM) and line-to-line time-dependent dielectric breakdown (TDDB) characteristics were obtained.
We have successfully evaluated hole mobility in a spin-coated film of a lead-bromide based layered perovskite having carbazole chromophore-linked ammonium molecules as organic layer by using FET measurement. The values of hole mobility, threshold voltage and on/off ratio at room temperature were evaluated.to.be 1.7 x 10(-6) cm2 V-1 s-1, 27 V and 28 V, respectively. However, the spin-coated films on Si substrates were not so uniform compared with those on fused quartz substrates. To improve the film uniformity, we examined the relationship between substrate temperature during spin-coating and film morphology in the layered perovskite spin-coated films. The mean roughness of the spin-coated films on Si substrates was dependent on the substrate temperature. At 353 K, the mean roughness was minimized and the carrier mobility was enhanced by one order of magnitude; the values of hole mobility and threshold voltage were .estimated to be 3.4 x 10(-5) cm2 V-1 s-1, and 22 V at room temperature in a preliminary FET evaluation, respectively. In addition, we determined a crystal structure of the layered perovskite by X-ray diffraction analysis. To gain a better understanding of the observed hole transports, we conducted quantum mechanical calculations using the obtained crystal structure information. The calculated band structure of the layered organic perovskite showed that the valence band is composed of the organic carbazole layer, which confirms that.the measured hole mobility is mainly derived from the organic part of the layered perovskite. Band and hopping transport mechanisms were discussed by calculating the effective masses and transfer integrals for the 2D periodic system of the organic layer in isolation.
A phenomenological model is proposed for the magnetoelastic behaviour at low fields for an amorphous ribbon that has been field annealed in the ribbon plane at an arbitrary angle to the sample axis. The model takes into account the anisotropy energy, the Zeeman energy, the domain coupling energy, the shape energy'and me effects of the pinned wall and charged wall. Explicit expressions for the initial susceptibility and quadntic coefficients af engineering magnetostAction are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.