Upper Miocene to Pliocene (Pannonian) sediments of the Pannonian Basin System accumulated in the brackish Lake Pannon and the fluvial feeder systems, between 11.6-2.6 Ma. Their stratigraphic subdivision has been problematic for a long time due to the laterally prograding architecture of the basin fill and the historically independently evolving stratigraphic schemes of the neighbouring countries. We correlated the lithostratigraphic units of the Lake Pannon deposits between Hungary and Croatia in the Drava Basin, using lithological, sedimentological and palaeontological data from boreholes and outcrops, and seismic correlation. The Croatica and Medvedski breg formations in Croatia correspond to the Endrőd Fm. in Hungary, comprising shallow to deep water, open lacustrine, calcareous to argillaceous marls. The Andraševec fm. in Croatia corresponds to the Szolnok and Algyő Fms. in Hungary, consisting of sandstones and siltstones of turbidite systems and of clay marls deposited on the shelf-break slope. The Nova Gradiška fm. in Croatia is an equivalent of the Újfalu Fm. in Hungary, built up of a variety of lithologies, including sand, silt, clay and huminitic clay, deposited in deltaic environments. The Pluska fm. in Croatia corresponds to the Zagyva Fm. in Hungary, consisting of variegated clays, silts, sands and lignites, deposited in alluvial and fluvial environments. Coarse-grained (sand, gravel) basal layers are assigned to the Kálla and Békés Fms. and the Sveti Matej member of the Croatica fm. Coarse-grained intercalations within the deep-water marls belong to the Dorozsma Member of the Endrőd Fm. in Hungary, and to the Bačun member of the Medvedski breg fm. in Croatia. Sediment transport and lateral accretion of the shelf edge in the Drava Basin took place from the N, NW, and W, to the S, SE, and E, respectively. According to the biostratigraphic and chronostratigraphic analyses, the oldest shelf-break slopes in the Mura Basin are more than 8 Ma old, whereas the youngest ones in the southeasternmost part of the Drava Basin may be Pliocene in age (younger than 5.3 Ma). Thus, the 180 km long and at least 700 m deep Drava Basin was transformed into a fluvial plain during the last 3.5 million years of the Miocene.
The Neogene Transylvanian Basin (TB), enclosed between the eastern and southern Carpathians and the Apuseni Mountains in Romania, is a significant natural gas province with a long production history. In order to improve the (bio) stratigraphic resolution, correlations and dating in the several 100-m-thick upper Miocene (Pannonian) succession of the basin, the largest and most fossiliferous outcrop at Guşteriţa (northeastern part of Sibiu) was investigated and set as a reference section for the Congeria banatica zone in the entire TB. Grey, laminated and massive silty marl, deposited in the deep-water environment of Lake Pannon, was exposed in the ~55-m-high outcrop. The uppermost 25 m of the section was sampled in high resolution (sampling per metres) for macro- and microfossils, including palynology; for authigenic 10Be/9Be dating and for magnetostratigraphy; in addition, macrofossils and samples for authigenic 10Be/9Be isotopic measurements were collected from the lower part of the section as well. The studied sedimentary record belongs to the profundal C. banatica mollusc assemblage zone. The upper 25 m can be correlated to the Hemicytheria tenuistriata and Propontoniella candeo ostracod biozones, the uppermost part of the Spiniferites oblongus, the entire Pontiadinium pecsvaradense and the lowermost part of the Spiniferites hennersdorfensis organic-walled microplankton zones. All samples contained endemic Pannonian calcareous nannofossils, representing the Noelaerhabdus bozinovicae zone. Nine samples were analysed for authigenic 10Be/9Be isotopic measurements. The calculated age data of six samples provided a weighted mean value of 10.42 ± 0.39 Ma. However, three samples within the section exhibited higher isotopic ratios and yielded younger apparent ages. A nearly twofold change in the initial 10Be/9Be ratio is a possible reason for the higher measured isotopic ratios of these samples. Magnetostratigraphic samples showed normal polarity for the entire upper part of the outcrop and can be correlated with the C5n.2n polarity chron (11.056–9.984 Ma, ATNTS2012), which is in agreement with the biostratigraphic data. Based on these newly obtained data and correlation of the biozones with other parts of the Pannonian Basin System, the Guşteriţa section represents the ~ 11.0–10.5 Ma interval, and it is a key section for correlation of mollusc, ostracod, dinoflagellate and calcareous nannoplankton biostratigraphic records within this time interval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.