N-linked glycans play key roles in protein folding, stability, and function. Biosynthetic modification of N-linked glycans, within the endoplasmic reticulum, features sequential trimming and readornment steps. One unusual enzyme, endo-α-mannosidase, cleaves mannoside linkages internally within an N-linked glycan chain, short circuiting the classical N-glycan biosynthetic pathway. Here, using two bacterial orthologs, we present the first structural and mechanistic dissection of endo-α-mannosidase. Structures solved at resolutions 1.7–2.1 Å reveal a (
β
/
α
)
8
barrel fold in which the catalytic center is present in a long substrate-binding groove, consistent with cleavage within the N-glycan chain. Enzymatic cleavage of authentic Glc
1/3
Man
9
GlcNAc
2
yields Glc
1/3
-Man. Using the bespoke substrate α-Glc-1,3-α-Man fluoride, the enzyme was shown to act with retention of anomeric configuration. Complexes with the established endo-α-mannosidase inhibitor α-Glc-1,3-deoxymannonojirimycin and a newly developed inhibitor, α-Glc-1,3-isofagomine, and with the reducing-end product α-1,2-mannobiose structurally define the -2 to +2 subsites of the enzyme. These structural and mechanistic data provide a foundation upon which to develop new enzyme inhibitors targeting the hijacking of N-glycan synthesis in viral disease and cancer.
Since large amounts of pineapple leaves are abandoned after harvest in agricultural areas, the possibility of developing value-added products from them is of interest. In this work, cellulose fiber was extracted from pineapple leaves and modified with ethylenediaminetetraacetic acid (EDTA) and carboxymethyl (CM) groups to produce Cell-EDTA and Cell-CM, respectively, which were then used as heavy metal ion adsorbents. A solution of either lead ion (Pb 2+ ) or cadmium ion (Cd 2+ ) was used as wastewater for the purpose of studying adsorption efficiencies. The adsorption efficiencies of Cell-EDTA and Cell-CM were significantly higher than those of the unmodified cellulose in the pH range 1−7. Maximum adsorptions toward Pb 2+ and Cd 2+ were, for Cell-EDTA, 41.2 and 33.2 mg g −1 , respectively, and, for Cell-CM, 63.4 and 23.0 mg g −1 , respectively. The adsorption behaviors of Cell-CM for Pb 2+ and Cd 2+ fitted well with a pseudo-first-order model, but those of Cell-EDTA for Pb 2+ and Cd 2+ fitted well with a pseudo-second-order model. All of the adsorption behaviors could be described using the Langmuir adsorption isotherm. Desorption studies of Pb 2+ and Cd 2+ on both adsorbents using 1 M HCl suggested that regenerability of Cell-EDTA was, for both adsorbates, better than that of Cell-CM. Moreover, adsorption measurements in a mixture of Pb 2+ and Cd 2+ at various ratios showed that for both adsorbents the adsorption of Pb 2+ was higher than that of Cd 2+ , while the adsorption selectivity for Pb 2+ of Cell-CM was greater than that of Cell-EDTA. This study showed that the modified cellulosic adsorbents made from pineapple leaves were able to efficiently adsorb metal ions.
Rhizobial Nod factors induce plant responses and facilitate bacterial infection, leading to the development of nitrogen-fixing root nodules on host legumes. Nodule initiation is highly dependent on Nod-factor structure and, hence, on at least some of the nodulation genes that encode Nod-factor production. Here, we report the effects of mutations in Mesorhizobium loti R7A nodulation genes on nodulation of four Lotus spp. and on Nod-factor structure. Most mutants, including a DeltanodSDeltanolO double mutant that produced Nod factors lacking the carbamoyl and possibly N-methyl groups on the nonreducing terminal residue, were unaffected for nodulation. R7ADeltanodZ and R7ADeltanolL mutants that produced Nod factors without the (acetyl)fucose on the reducing terminal residue had a host-specific phenotype, forming mainly uninfected nodule primordia on Lotus filicaulis and L. corniculatus and effective nodules with a delay on L. japonicus. The mutants also showed significantly reduced infection thread formation and Nin gene induction. In planta complementation experiments further suggested that the acetylfucose was important for balanced signaling in response to Nod factor by the L. japonicus NFR1/NFR5 receptors. Overall the results reveal differences in the sensitivity of plant perception with respect to signaling leading to root hair deformation and nodule primordium development versus infection thread formation and rhizobial entry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.