A new concept is demonstrated for an integrated close to zero waste wheat straw biorefinery combining two novel green technologies, CO 2 extraction and low temperature microwave pyrolysis, to produce a variety of products, including energy and CO 2 which can be internally recycled to sustain the processes. CO 2 adds value to the process by extracting secondary metabolites including fatty acids, wax esters and fatty alcohols. Low temperature microwave pyrolysis (<200 C) is shown to use less energy and produce higher quality oils and chars than conventional pyrolysis. The oils can be fractionated to produce either transport fuels or platform chemicals such as levoglucosan and levoglucosenone. The chars are appropriate for co-firing. The quality of the chars was improved by washing to remove the majority of the potassium and chlorine present, lowering their fouling potential. The economic feasibility of a wheat straw biorefinery is enhanced by intergrating these technologies.
Biomass energy with CO2 capture could achieve net negative emissions, vital for meeting carbon budgets and emission targets. However, biomass often has significant quantities of light metals/inorganics that cause issues for boiler operation and downstream processes; including deposition, corrosion, and solvent degradation. This study investigated the pilot-scale combustion of a typical biomass used for power generation (white wood) and assessed the variations in metal aerosol release compared to bituminous coal. Using inductively coupled plasma optical emission spectrometry, it was found that K aerosol levels were significantly greater for biomass than coal, on average 6.5 times, with peaks up to 10 times higher; deposition could thus be more problematic, although Na emissions were only 20% of those for coal. Transition metals were notably less prevalent in the biomass flue gas; with Fe and V release in particular much lower (3–4% of those for coal). Solvent degradation may therefore be less severe for biomass-generated flue gases. Furthermore, aerosol emissions of toxic/heavy metals (As/Cd/Hg) were absent from biomass combustion, with As/Cd also not detected in the coal flue gas. Negligible Cr aerosol concentrations were found for both. Overall, except for K, metal aerosol release from biomass combustion was considerably reduced compared to coal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.