The adsorption of protein to nanoparticles plays an important role in toxicity, food science, pharmaceutics, and biomaterial science. Understanding how proteins bind to nanophase surfaces is instrumental for understanding and, ultimately, controlling nanoparticle (NP) biochemistry. Techniques probing the adsorption of proteins at NP interfaces exist; however, these methods have been unable to determine the orientation and folding of proteins at these interfaces. For the first time, we probe in situ with sum frequency scattering vibrational spectroscopy the orientation of model leucine-lysine (LK) peptides adsorbed to NPs. The results show that both α-helical and β-strand LK peptides bind the particles in an upright orientation, in contrast to the flat orientation of LKs binding to planar surfaces. The different binding geometry is explained by Coulombic forces between peptides across the particle volume.
In this Tutorial series, we aim to provide an accessible introduction to vibrational sum frequency generation (VSFG) spectroscopy, targeted toward people entering the VSFG world without a rigorous formal background in optical physics or nonlinear spectroscopy. In this article, we describe in depth how a broadband VSFG spectrometer is designed and constructed, using the instrument in SurfLab, Aarhus University, as an illustrative case. Detailed information about specific instrumentation (together with reasons why things are the way they are) is given throughout. This information is often omitted in other descriptions of such instrumentation and so will be invaluable to people new to the field.
The collision complex between the ground electronic state of an organic molecule, M, and ground state oxygen, O2(X3Σg-), can absorb light to produce an intermolecular charge transfer (CT) state, often...
Interfaces between bulk media are often where critical molecular processes occur that can dictate the chemistry of an entire macroscopic system. Optical spectroscopy such as IR or Raman spectroscopy is often challenging to apply to interfaces due to contributions from bulk phases that dominate the spectra, masking any detail about the interfacial layer. Vibrational sum frequency generation (VSFG) spectroscopy is a nonlinear spectroscopy that allows vibrational spectra of molecules at interfaces to be directly measured. This Tutorial series is aimed at people entering the VSFG world without a rigorous formal background in optical physics or nonlinear spectroscopy. In this article, we present the fundamental theory of VSFG spectroscopy, with a focus on qualitative, intuitive explanation of the relevant physical phenomena, with minimal mathematics, to enable a newcomer to VSFG spectroscopy to quickly become conversant in the language and fundamental physics of the technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.