Synthesis of nanomaterials by biological approach is innovative, cheaper and environmental friendly and requires less-labor. In this regard, the present study focused on the synthesis of silver nanoparticles from the extract of Sargassum tenerrimum. Synthesized silver nanoparticles were wellcharacterized by UV-Visible Spectroscopy (UV-Vis), Fourier-Transform Infra-red Spectroscopy (FT-IR), Transmission Electron Microscopy analysis (TEM) and Dynamic Light Scattering (DLS). It was found that spherical shaped nanoparticles of size 20 nm were found in TEM analysis and showed effective anti-bacterial activity against standard reference strains. Altogether, extracts from seaweed were screened for phytochemicals followed by FT-IR prediction to reveal chemical functional groups present. The results showed that the anti-bacterial activity of silver nanoparticles was comparably higher than the phytochemicals present. Therefore, the present study elucidates silver nanoparticles can play a vital role in nano-based therapy in future. Citation: P. Kumar, et al. Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its anti-bacterial activity.
For nearly a decade, silver nanoparticles (AgNPs) have been the most prevalent commercial nanomaterials products widely used in different biomedical applications due to their broad-spectrum antimicrobial activity.
Monitoring water quality of surface water resources is the key concern in determining the potable water quality in highaltitude region. Therefore, there is a need to evaluate different parameters affecting water quality of river and identify the most important variables and factors significantly affecting water quality. In the present study, multivariate statistical methods including cluster analysis and principal component analysis/factor analysis were applied to analyze the Indus River water quality in the Trans-Himalayan region of India. For this total 25 no. of physicochemical parameters were analyzed in water samples taken from seven different monitoring sites in summer and winter season. All the physical, microbial, chemical, and mineral parameters were analyzed by using the standard methods of American Public Health Association, whereas minerals were determined with the inductively coupled plasma optical emission of spectroscopy method. Thereafter, experimental two-season (28 samples × 25 parameters) matrices of both the seasons were run through the multivariate statistical data analysis. The varifactors obtained from the FA of both the seasons and results indicate that the parameters responsible for water quality variations are mainly related to discharge and temperature (natural), organic pollution (point source: domestic sanitary waste), and nutrients (non-point sources: agriculture) in the summer season. However, in the winter seasons, results showed that the river water was less affected by anthropogenic activities and natural weathering process. Therefore, it is concluded that quality of Indus River water is affected by agricultural, domestic, and hydrogeochemical sources in the summer season. These findings corroborate suitability of multivariate statistical techniques in the elucidation of various parameters for water quality monitoring and determination of different contamination sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.