It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux and impaired separation throughput. Here we present nm-thick molecular sieving membranes composed of porous two-dimensional metal-organic nanosheets. These membranes possess pore openings parallel to gas concentration gradient allowing high gas permeation flux and high selectivity, which are proven by both experiment and molecular dynamics simulation. Furthermore, the gas transport pathways of these membranes exhibit a reversed thermo-switchable feature, which is attributed to the molecular flexibility of the building metal-organic nanosheets.
SignificanceToday, amino acids are primarily manufactured via microbial cultivation processes, which are costly, are time consuming, and require extensive separations processes. As an alternative, chemocatalytic approaches to produce amino acids from renewable feedstocks such as bio-based sugars could offer a rapid and potentially more efficient means of amino acid synthesis, but efforts to date have been limited by the development of facile chemistry and associated catalyst materials to selectively produce α-amino acids. In this work, various α-amino acids, including alanine, leucine, aspartic acid, and phenylalanine, were obtained from both biomass-derived α-hydroxyl acids and glucose. The route bridges plant-based biomass and proteinogenic α-amino acids, offering a chemical approach that is potentially superior to microbial cultivation processes.
A composite of ionic liquid [BMIM][PF6] supported on metal–organic framework IRMOF-1 is investigated for CO2 capture by molecular computation. Due to the confinement effect, IL in the composite exhibits an ordered structure as observed from radial distribution functions. The bulky [BMIM]+ cation resides in the open pore of IRMOF-1, whereas the small [PF6]− anion prefers to locate in the metal cluster corner and possesses a strong interaction with the framework. [BMIM]+ exhibits a greater mobility than [PF6]−, which is also observed in simulation and experimental studies for imidazolium-based ILs in the bulk phase. With increasing IL ratio in the composite and thus enhancing confinement effect, the mobility of [BMIM]+ and [PF6]− is reduced. Ions in the composite interact strongly with CO2; in particular, the [PF6]− anion is the most favorable site for CO2 adsorption. The composite selectively adsorbs CO2 from the CO2/N2 mixture, with selectivity significantly higher than many other supported ILs. Furthermore, the selectivity increases with increasing IL ratio in the composite. This computational study, for the first time, demonstrates that IL/MOF composite might be potentially useful for CO2 capture.
IRMOF-1 supported ionic liquid (IL) membranes are investigated for CO(2) capture by atomistic simulation. The ILs consist of identical cation 1-n-butyl-3-methylimidazolium [BMIM](+), but four different anions, namely hexafluorophosphate [PF(6)](-), tetrafluoroborate [BF(4)](-), bis(trifluoromethylsulfonyl)imide [Tf(2)N](-), and thiocyanate [SCN](-). As compared with the cation, the anion has a stronger interaction with IRMOF-1 and a more ordered structure in IRMOF-1. The small anions [PF(6)](-), [BF(4)](-), and [SCN](-) prefer to locate near to the metal-cluster, particularly the quasi-spherical [PF(6)](-) and [BF(4)](-). In contrast, the bulky and chain-like [BMIM](+) and [Tf(2)N](-) reside near the phenyl ring. Among the four anions, [Tf(2)N](-) has the weakest interaction with IRMOF-1 and thus the strongest interaction with [BMIM](+). With increasing the weight ratio of IL to IRMOF-1 (W(IL/IRMOF-1)), the selectivity of CO(2)/N(2) at infinite dilution is enhanced. At a given W(IL/IRMOF-1), the selectivity increases as [Tf(2)N](-) < [PF(6)](-) < [BF(4)](-) < [SCN](-). This hierarchy is predicted by the COSMO-RS method, and largely follows the order of binding energy between CO(2) and anion estimated by ab initio calculation. In the [BMIM][SCN]/IRMOF-1 membrane with W(IL/IRMOF-1) = 1, [SCN](-) is identified to be the most favorable site for CO(2) adsorption. [BMIM][SCN]/IRMOF-1 outperforms polymer membranes and polymer-supported ILs in CO(2) permeability, and its performance surpasses Robeson's upper bound. This simulation study reveals that the anion has strong effects on the microscopic properties of ILs and suggests that MOF-supported ILs are potentially intriguing for CO(2) capture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.