Pangolins are the most trafficked animals globally. Although the Indian pangolin Manis crassicaudata occurs across the Indian subcontinent (excluding parts of the Himalayas and the north-east, where the Chinese pangolin Manis pentadactyla is present), it is categorized as Endangered on the IUCN Red List as a result of heavy poaching for its meat and scales. Several areas have not yet been surveyed for the occurrence of the Indian pangolin, one of which is the 16,948 km2 tropical deciduous forests of the northern Eastern Ghats landscape in Andhra Pradesh. During December 2017–April 2018, we surveyed 750 km2 of this landscape for the presence of the Indian pangolin, using camera traps. As an alternative method to document pangolin presence, and to identify factors driving hunting of the species, we also conducted, during the same period, a total of 60 semi-structured interviews with people in 30 villages. Interviewees reported the presence of pangolins in a majority of the grid cells that we surveyed with camera traps, particularly in moist deciduous forests distant from villages. However, the camera traps did not detect pangolins in 840 trap-days. Hunting of pangolins for their meat, which is consumed locally, and for their scales, which are traded, is most likely the reason for the rarity of the species in this landscape. A better understanding of the proximate and ultimate drivers of pangolin hunting is required, to inform proactive conservation management for this increasingly threatened species.
Chytridiomycosis is an infectious disease in amphibians caused by two chytrid fungi, Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal), and is the worst infectious disease known in wildlife so far. Worldwide spread of the disease has caused unprecedented loss of global amphibian diversity. Although some lineages of Bd are enzootic and are not as deadly as the pandemic lineage, nearly 40% of amphibian species are still declining globally due to chytridiomycosis. Efficient surveillance and monitoring of chytridiomycosis are the immediate safeguard against rapid declines or extinctions of amphibian populations. Previous studies showed that existing diagnostic assays were not sensitive to certain Bd haplotypes like those from Korea, China, India, Japan, and Brazil and thereby, there is a need for a universal, sensitive, specific, reproducible, and affordable diagnostic assay. We designed a one-step SYBR green-based quantitative polymerase chain reaction (nSYBR qPCR) for robust detection of Bd. It amplifies an 82 base-pair segment between the 5.8S rRNA and ITS2 of the Bd genome. The primer pair was tested in-silico on 40 isolates from four known Bd lineages. Using skin swab samples of wild amphibians and cultured zoospores from Australia and Panama, we compared the clinical specificity and sensitivity of the newly described primers to the existing TaqMan-based qPCR assay. From India, we used samples which had been previously tested with Nested PCR to validate the new primer pairs. The newly described primer pair was then tested on swab samples from Anura, Caudata and Gymnophiona from India. We report widespread chytridiomycosis with varying infection loads on them. The new assay showed comparable efficiency to the TaqMan-based qPCR assay. This diagnostic assay can facilitate widespread surveillance of chytridiomycosis where it has been previously absent, which may reveal several reservoirs of the pathogen and can improve our understanding of this important wildlife disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.