Despite recognition that clinical decision support (CDS) can improve patient care, there has been poor penetration of this technology into healthcare settings. We used CDS to increase inpatient influenza vaccination during implementation of an electronic medical record, in which pharmacy and nursing transactions increasingly became electronic. Over three influenza seasons we evaluated standing orders, provider reminders, and pre-selected physician orders. A pre-intervention cross-sectional survey showed that most patients (95%) met criteria for vaccination. During our intervention, physicians were increasingly likely to accept pre-selected vaccination orders, Year 1 (47%), Year 2 (77%), Year 3 (83%); however vaccine administration by nurses was suboptimal. As electronic medical record functionality improved, patient receipt of vaccine increased dramatically, Year 1 [0/36; 0%], Year 2 [8/66; 12%], Year 3 [286/805; 36%]. Successful use of clinical decision support to increase inpatient influenza vaccination only occurred after initiation of CPOE for all medications and integration of an electronic medication administration record. Also, since most patients met criteria for influenza vaccination, complicated logic to identify high-risk patients was unnecessary.
We compared strategies to increase the rate of influenza vaccination. A written standing-orders policy that enabled nurses to vaccinate patients was compared with augmentation of the standing-orders policy with either electronic opt-out orders for physicians or electronic reminders to nurses. Use of opt-out orders yielded the highest vaccination rate (12% of patients), followed by use of nursing reminders (6%); use of the standing-orders policy alone was ineffective.
Graphical abstract
The unforeseen outbreak of the COVID-19 epidemic has significantly stipulated the use of plastics to minimize the exposure and spread of the novel coronavirus. With the onset of the vaccination drive, the issue draws even more attention due to additional demand for vaccine packaging, transport, disposable syringes, and other allied devices scaling up to many million tonnes of plastic. Plastic materials in personal protective equipment (PPE), disposable pharmaceutical devices, and packaging for e-commerce facilities are perceived to be a lifesaver for the frontline healthcare personnel and the general public amidst recurring waves of the pandemic. However, the same material poses a threat as an evil environmental polluter when attributed to its indiscriminate and improper littering as well as mismanagement. The review not only highlights the environmental consequences due to the excessive use of disposable plastics amidst COVID-19 but also recommends mixed approaches to its management by adopting the combined and step-by-step methodology of adequate segregation, sterilization, sanitization activities, technological intervention, and process optimization measures. The overview finally concludes with some crucial way-forward measures and recommendations like the development of bioplastics and focusing on biodegradable/bio-compostable material alternatives to holistically deal with future pandemics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.