Using first-principles calculations, we predict that monolayered honeycomb and rectangular two-dimensional (2D) lattice forms of NbN are metastable and naturally derivable from different orientations of its rocksalt structure. While the rectangular form is shown to retain the metallic and superconducting (SC) properties of the bulk, spectacularly contrasting properties emerge in the honeycomb form of NbN: it exhibits (a) semiconducting electronic structure suitable for valleytronics and photocatalysis of water splitting, (b) piezoelectricity with a spontaneous polarization originating from a rare sd(2)-sp(2) type hybridization, and (c) a wide gap in its phonon spectrum making it suitable for use in hot carrier solar cells. Our work demonstrates how low coordination numbers and associated strong bonding stabilize 2D nanoforms of covalently bonded solids and introduce novel functionalities of technological importance.
Ferroelectric hafnium zirconium oxide (HZO) thin films show significant promise for applications in ferroelectric random-access memory, ferroelectric field-effect transistors, and ferroelectric tunneling junctions. However, there are shortcomings in understanding ferroelectric...
The ultimate lower size limit for superconducting order to exist is set by the "Anderson criterion"-arising from quantum confinement-that appears to be remarkably accurate and universal. We show that carefully grown, phase-pure, nanocrystalline bcc-Ta remains superconducting (with ordering temperature, T ≈ 0.9 K) down to sizes 40% below the conventional estimate of the Anderson limit of 4.0 nm. Further, both the T and the critical magnetic field exhibit an unusual, nonmonotonic size dependence, which we explain in terms of a complex interplay of quantum size effects, surface phonon softening, and lattice expansion. A quantitative estimation of T within first-principles density functional theory shows that even a moderate lattice expansion allows superconductivity in Ta to persist down to sizes much lower than the conventional Anderson limit, which can be traced to anomalous softening of a phonon due to its coupling with electrons. This appears to indicate the possibility of bypassing the Anderson criterion by suitable crystal engineering and obtaining superconductivity at arbitrarily small sizes, an obviously exciting prospect for futuristic quantum technologies. We take a critical look at how the lattice expansion modifies the Anderson limit, an issue of fundamental interest to the study of nanoscale superconductivity.
Finding a suitable material for hydrogen storage at ambient atmospheric conditions is challenging for material scientists and chemists. In this work, using a first principles based cluster expansion approach, the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.