A compressive description of tropical milky white mushroom (Calocybe indica P&C var. APK2) is provided in this review. This mushroom variety was first identified in the eastern Indian state of West Bengal and can be cultivated on a wide variety of substrates, at a high temperature range (30~38℃). However, no commercial cultivation was made until 1998. Krishnamoorthy 1997 rediscovered the fungus from Tamil Nadu, India and standardized the commercial production techniques for the first time in the world. This edible mushroom has a long shelf life (5~7 days) compared to other commercially available counterparts. A comprehensive and critical review on physiological and nutritional requirements viz., pH, temperature, carbon to nitrogen ratio, best carbon source, best nitrogen source, growth period, growth promoters for mycelia biomass production; substrate preparation; spawn inoculation; different supplementation and casing requirements to increase the yield of mushrooms has been outlined. Innovative and inexpensive methods developed to commercially cultivate milky white mushrooms on different lignocellulosic biomass is also described in this review. The composition profiles of milky white mushroom, its mineral contents and non-enzymatic antioxidants are provided in comparison with button mushroom (Agaricus bisporus) and oyster mushroom (Pleurotus ostreatus). Antioxidant assay results using methanol extract of milky white mushroom has been provided along with the information about the compounds that are responsible for flavor profile both in fresh and dry mushrooms. Milky white mushroom extracts are known to have anti-hyperglycemic effect and anti-lipid peroxidation effect. The advantage of growing at elevated temperature creates newer avenues to explore milky white mushroom cultivation economically around the world, especially, in humid tropical and sub-tropical zones. Because of its incomparable productivity and shelf life to any other cultivated mushrooms in the world, milky white mushroom could play an important role in satisfying the growing market demands for edible mushrooms in the near future.
Diverse endophytes with multiple functions exist in different banana cultivars. However, the diversity of cultivable bacterial endophytome that contributes to antifungal activity against Fusarium oxysporum f.sp. cubense (Foc) in resistant and susceptible banana cultivars is mostly unknown. In the present study, we isolated bacterial endophytes from resistant Yengambi KM5 (AAA) and susceptible banana cultivar Ney Poovan (AB) to determine the diversity of cultivable bacterial endophytes. Our study revealed the presence of 56 cultivable bacterial endophytes and 6 nectar-associated bacteria in YKM5 and 31 cultivable bacterial endophytes in Ney Poovan. The identified cultivable bacterial genera in YKM5 included
The present investigation is focused on exploring the possibilities of identifying biomolecules from the fruiting body of the medicinal mushroom Ganoderma lucidum against the mango anthracnose pathogen Colletotrichum gloeosporioides. The fruiting body (cap and stipe portion) of G. lucidum extracted with ethyl acetate solvent at a maximum inhibitory concentration of 1 percent exhibited the maximum mycelial growth inhibition of C. gloeosporioides with 70.10 percent and 40.77 percent, respectively. Furthermore, subjecting the ethyl acetate extracts from the cap portion of G. lucidum through thin layer chromatography (TLC) revealed the presence of two bands with Rf values of 0.38 and 0.35. The compounds eluted from band 1 recorded with the maximum mycelial growth inhibition of C. gloeosporioides by 53.77 percent followed by band 2 (46.33 percent) using an agar well diffusion test. Similarly, the analysis of ethyl acetate extracts from the cap portion of G. lucidum through Gas Chromatography-Mass spectroscopy (GC-MS) revealed the presence of the organoheterocyclic compound benzothiazole, as expressed in the highest peak area at 22.03 RT with the highest probability percentage (97%). Confirmation of the antifungal nature of benzothiazole was obtained by testing the standard sample of benzothiazole which showed a cent percent of inhibition on mycelial growth of C. gloeosporioides at 50 ppm minimum fungicidal concentration. Furthermore, benzothiazole caused abnormality in the mycelial structures, viz., distortion, shrinkage, clumping of mycelium, conidial malformation, and complete arrestment of conidial germination of C. gloeosporioides as observed through Scanning Electron Microscopy. The research on biomolecular extract of G. lucidum could be a novel and interesting concept for the possibility in suppression of plant pathogenic microbes in the natural field.
In this study, the volatilomes of naturally growing plant leaves were immobilized in a suitable substrate to enhance vapors’ diffusion in the soil to eradicate the Fusarium wilt pathogens in Tomato. Volatilomes produced by Mentha spicata leaves immobilized in vermiculite ball was found to be effective and exhibit 92.35 percent inhibition on the mycelial growth of Fusarium oxysporum f. sp. lycopersici (FOL). Moreover, the volatilomes of M. spicata immobilized vermiculite balls were tested based on the distance traveled by the diffused volatilomes from the ball and revealed that the volatilomes of M. spicata traveled up to 20 cm distance from the center of PVC (Polyvinly chloride) chamber showed maximum reduction in colony growth of FOL at 12th day after inoculation. Tomato plants inoculated with FOL revealed increased expressions of defense gene, pathogenesis related protein (PR1) with 2.63-fold after 72 h and the gene, transcription factor (WRKY) increased with 2.5-fold after 48 h on exposure to the volatilomes of M. spicata vermiculite balls. To the best of our knowledge, this is the first report on development of volatilomes based vermiculite ball formulations. This result indicated that the volatilomes of M. spicata are promising phyto-fumigants for management of Tomato Fusarial wilt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.