In this study, a new approach for producing phosphorescent aluminum coatings was studied. Using the plasma electrolytic oxidation (PEO) process, a porous oxide coating was produced on the Al6082 aluminum alloy substrate. Afterwards, activated strontium aluminate (SrAl2O4: Eu2+, Dy3+) powder was filled into the cavities and pores of the PEO coating, which resulted in a surface that exhibits long-lasting luminescence. The structural and optical properties were studied using XRD, SEM, and photoluminescence measurements. It was found that the treatment time affects the morphology of the coating, which influences the amount of strontium aluminate powder that can be incorporated into the coating and the resulting afterglow intensity.
Dosimetry is a widespread material science field dealing with detection and quantification of ionizing radiation using electronic processes in materials. One of the main aspects that determines the performance of dosimeters is the type of defects the material contains. Crystalline lattice imperfections are formed around impurity ions, which may have a smaller or larger size, or different oxidation states compared to host ions. In this study, we show what effects Cr impurities have on the luminescent properties of alumina. Porous Al 2 O 3 : Cr microceramics synthesized using the sol-gel method showed a higher thermoluminescence response than a single crystal ruby. We have found that Cr 2 O 3 concentration of 0.2 wt% was optimal; it yielded the highest X-ray luminescence and thermostimulated luminescence readout of all studied additive concentrations added to alumina during synthesis. Our results show that Cr doped alumina could potentially be used as a promising new material for dosimetry of ionizing radiation.
For decades, plasma electrolytic oxidation (PEO) coatings are actively studied and applied to protect the surface of various valve metals from chemical or mechanical damage. However, over the last couple of years intense research is being done to explore additional possibilities of the PEO coatings apart from their classical application. One of the possible additional uses is thermostimulated luminescence dosimetry that is already widely applied for environmental and health monitoring. This research proposes a method to produce a novel functional coating on aluminium surface exhibiting intense thermostimulated luminescence signal that could be used for dosimetry of ionizing radiation. The result was achieved using plasma electrolytic oxidation with modified electrolyte to introduce carbon ions into the oxide thus inducing defects in the crystalline structure of the coating. Al6082 aluminium alloy was used as a substrate, KOH and ethanol mixture as an electrolyte. A bipolar pulsed regime was used for 15 min. The obtained coating combines the desired luminescence properties with a good mechanical stability due to the relatively hard cubic phase of the coating. Scalability of the technology and low production cost makes the coatings prospective for various practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.