Single-stranded RNA viruses encompass broad classes of infectious agents and cause the common cold, cancer, AIDS, and other serious health threats. Viral replication is regulated at many levels, including using conserved genomic RNA structures. Most potential regulatory elements within viral RNA genomes are uncharacterized. Here we report the structure of an entire HIV-1 genome at single nucleotide resolution using SHAPE, a high-throughput RNA analysis technology. The genome encodes protein structure at two levels. In addition to the correspondence between RNA and protein primary sequences, a correlation exists between high levels of RNA structure and sequences that encode inter-domain loops in HIV proteins. This correlation suggests RNA structure modulates ribosome elongation to promote native protein folding. Some simple genome elements previously shown to be important, including the ribosomal gag-pol frameshift stem-loop, are components of larger RNA motifs. We also identify organizational principles for unstructured RNA regions. Highly used splice acceptors lie in unstructured motifs and hypervariable regions are sequestered from flanking genome regions by stable insulator helices. These results emphasize that the HIV-1 genome and, potentially, many coding RNAs are punctuated by numerous previously unrecognized regulatory motifs and that extensive RNA structure may constitute an additional level of the genetic code.
Over 100 genetic loci harbor schizophrenia associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of schizophrenia cases (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ~20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3, or SNAP91. Altering expression of FURIN, TSNARE1, or CNTN4 changes neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yields abnormal migration. Of 693 genes showing significant case/control differential expression, their fold changes are ≤ 1.33, and an independent cohort yields similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.
The AACR Project GENIE is an international data-sharing consortium focused on generating an evidence base for precision cancer medicine by integrating clinical-grade cancer genomic data with clinical outcome data for tens of thousands of cancer patients treated at multiple institutions worldwide. In conjunction with the first public data release from approximately 19,000 samples, we describe the goals, structure, and data standards of the consortium and report conclusions from high-level analysis of the initial phase of genomic data. We also provide examples of the clinical utility of GENIE data, such as an estimate of clinical actionability across multiple cancer types (>30%) and prediction of accrual rates to the NCI-MATCH trial that accurately reflect recently reported actual match rates. The GENIE database is expected to grow to >100,000 samples within 5 years and should serve as a powerful tool for precision cancer medicine. Significance The AACR Project GENIE aims to catalyze sharing of integrated genomic and clinical datasets across multiple institutions worldwide, and thereby enable precision cancer medicine research, including the identification of novel therapeutic targets, design of biomarker-driven clinical trials, and identification of genomic determinants of response to therapy.
Previous genome-wide association studies (GWAS), conducted by our group and others, have identified loci that harbor risk variants for neurodegenerative diseases, including Alzheimer's disease (AD). Human disease variants are enriched for polymorphisms that affect gene expression, including some that are known to associate with expression changes in the brain. Postulating that many variants confer risk to neurodegenerative disease via transcriptional regulatory mechanisms, we have analyzed gene expression levels in the brain tissue of subjects with AD and related diseases. Herein, we describe our collective datasets comprised of GWAS data from 2,099 subjects; microarray gene expression data from 773 brain samples, 186 of which also have RNAseq; and an independent cohort of 556 brain samples with RNAseq. We expect that these datasets, which are available to all qualified researchers, will enable investigators to explore and identify transcriptional mechanisms contributing to neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.